
CMPE 411

Computer Architecture

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 9

Floating Point Operations

Lecture’s Overview

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Algorithms for dividing unsigned numbers
(Evolution of optimization, complexity)

• Handling of sign while performing a division
(Remainder sign matches the dividend’s)

• Hardware design for integer division
(Same hardware as Multiply)

 This Lecture:

• Representation of floating point numbers

• Floating point arithmetic

• Floating point hardware

Introduction
 What can be represented in N bits?

N
 Unsigned 0 to 2 - 1

 2s Complement
N-1

- 2 to
N-1

2 - 1

 1s Complement
N-1

- 2 +1 to
N-1

2 -1

 Excess M (E = e + M) -M to
N

2 - M - 1

 BCD 0 to
N/4

10 - 1

9,349,398,989,787,762,244,859,087,678

0.0000000000000000000000045691

2/3

 2

 But, what about?

 very large numbers?

 very small number?

 rational numbers

 irrational numbers

 transcendental numbers e, 
* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

Binary Coded Decimal (BCD)

 Each binary coded decimal digit is composed of 4 bits.

* Slide is courtesy of M. Murdocca and V. Heuring

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

 Example: Represent +07910 in BCD: 0000 0111 1001

 Example: Represent -07910 in BCD: 1001 0010 0001

1. Subtract each digit of –079 from 9 to obtain the nine’s complement,

so 999 - 079 = 920.

2. Adding 1 produces the ten’s complement: 920 + 1 = 921.

3. Converting each base 10 digit of 921 to BCD produces 1001 0010 0001

Excess (Biased)

* Slide is courtesy of M. Murdocca and V. Heuring

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 5

 The leftmost bit is the sign (usually 1 = positive, 0 = negative).

 Representations of a number are obtained by adding a bias to

the two’s complement representation. This goes both ways,

converting between positive and negative numbers.

 The effect is that numerically smaller numbers have smaller

bit patterns, simplifying comparisons for floating point

exponents.

 Example (excess 128 “adds” 128 to the two’s complement

version, ignoring any carry out of the most significant bit):

+1210 = 100011002 , -1210 = 011101002

 Only one representations for zero:

+0 = 100000002 , -0 = 100000002

 Range for an 8-bit representation is [+12710, -12810]

 Range for an N-bit representation is [+(2N-1-1)10, -(2N-1)10]

3-Bit Signed Integer Representations

* Slide is courtesy of M. Murdocca and V. Heuring

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 6

Floating Point Numbers

23
6.02 x 10 1.673 x 10

-24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 8

Sign, magnitude

IEEE F.P. ± 1.M x 2
e - 127

 Issues:

 Arithmetic (+, -, *, /)

 Representation, Normal form (no leading zeros)

 Range and Precision

 Rounding

 Exceptions (e.g., divide by zero, overflow, underflow)

 Errors

 Properties (negation, inversion, if A B then A - B  0)
* Slide is courtesy of Dave Patterson

Normalization

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

* Slide is courtesy of M. Murdocca and V. Heuring

 The base 10 number 254 can be represented in floating

point form as 254  100, or equivalently as:

25.4  101, or

2.54  102, or

.254  103, or

.0254  104, or

infinitely many other ways, which creates problems when

making comparisons

 Floating point numbers are usually normalized, with the radix

point located in only one possible position for a given number

 Usually, but not always, the normalized representation places

the radix point immediately to the left of the leftmost, nonzero

digit in the fraction, as in: .254  103

Floating-Point Representation

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 The size of the exponent determines the range of represented numbers

 Precision of the representation depends on the size of the significand

 The fixed word size requires a trade-off between accuracy and range

 Too large number cannot be represented causing an “overflow” while a too

small number causes an “underflow”

 Negative and positive mantissas are designated by a sign bit using a sign

and magnitude representation

 Exponents are usually represented using “excess M” representation to

facilitate comparison between floating point numbers

 Double precision uses multiple words to expand the range of both the

exponent and mantissa and limits overflow and underflow conditions

S Exponent Significand

1 8 23 1 11 52

S Exponent Significand

Single precision Double precision

IEEE 754 Standard Representation

Single precision 1 8 23

sign

exponent:
excess 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit: 1.M

Actual exponent is
e = E - 127

N = (-1) 2 (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0 -1.5 = 1 01111111 10 . . . 0

 Magnitude of numbers that can be represented is in the range:

to 2
127

(2 - 2 -23)
-126

2 (1.0)

which is approximately:

1.8 x 10
-38

to 3.40 x 10
38

Integer comparison is valid on IEEE Floating Point numbers of same sign

 Fairly ubiquitous since after 1980

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

S E M

Example: show -12.62510 in single precision IEEE-754 format.

Step #1: Convert to target base. -12.62510 = -1100.1012

Step #2: Normalize. -1100.1012 = -1.1001012  23

Step #3: Fill in bit fields. Sign is negative, so sign bit is 1.

Exponent is in excess 127 (not excess 128!), so exponent is

represented as the unsigned integer 3 + 127 = 130. Leading 1

of significand is hidden, so final bit pattern is:

1 1000 0010 . 1001 0100 0000 0000 0000 000
* Slide is courtesy of M. Murdocca and V. Heuring

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 12

IEEE-754 Floating Point Formats

An Example

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

10

2 -2 -1
= (-3/2) = (-11  2) = (-0.11) = (-1.1  2)

10 2 2 2

s (Exponent - 127)

Single precision representation is: (-1)  (1+Significand)  2

1
(-0.75) is represented as (-1)  (1+.1000 0000 0000 0000 0000 000)  2

(126)

Show the IEEE 754 binary representation of -0.75 in single & double precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Significand

1 0 1 1 1 1 1 1 0 1 0

Exponent

= (-3/4)
10

Sign

(-0.75)

10
(-0.75) is represented as (-1)  (1+.1000 0000 ….. 0000 0000) 2

1 (1022)

10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

First 20-b it o f Sign if icand

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ExponentS ign

0 0

Last 32-b it o f Sign if icand
s (Exponent - 1023)

Double precision representation is: (-1)  (1+Significand)  2

Floating Point Arithmetic

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Floating point arithmetic differs from integer arithmetic in that

exponents must be handled as well as the magnitudes of the

operands.

 The exponents of the operands must be made equal for

addition and subtraction. The fractions are then added or

subtracted as appropriate, and the result is normalized.

Example: Perform the following addition: (.101  23 + .111  24)2

Start by adjusting the smaller exponent to be equal to the larger

exponent, and adjust the fraction accordingly. Thus we have

.101  23 = .010  24, losing .001  23 of precision in the

process.

 The resulting sum is (.010 + .111)  24 = 1.001  24 = .1001  25

and rounding to three significant digits, .100  25, and we have

lost another 0.001  24 in the rounding process.
* Slide is courtesy of M. Murdocca and V. Heuring

2. Add the significands

4. Round the significand to the appropriate

number of bits

No
Still normalized?

Yes

Done

No

YesOverflow or

underflow?

Exception

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

1. Compare the exponents of the two numbers.

Shift the smaller number to the right until its

exponent would match the larger exponent

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Floating Point Addition
Start

For addition (or subtraction) this translates

into the following steps:

(1) Compute Ye - Xe (getting ready to align)

(2) Right shift Xm to form Xm 2 (Xe -Ye)

(3) Compute Xm 2(Xe -Ye) + Ym

If representation demands normalization, then

the following step:

(4) Left shift result, decrement result exponent

Right shift result, increment result

Continue until MSB of data is (Hidden bit)

(5) If result is 0 mantissa, may need to set

exponent to zero by special step

0 10 1 0 1

Control

Smal l ALU

Big ALU

Sign Exponent Significand Sign Exponent Signif icand

Exponent
difference

Shif t right

Shif t lef t or right

Rounding hardware

Sign Exponent Significand

0 10 1

Increment or
decrement

Shif t smal ler

number right

Com pare

ex ponents

Add

Normal ize

Round

Floating Addition Hardware

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Sign

Floating Point Multiplication/Division

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

* Slide is courtesy of M. Murdocca and V. Heuring

Floating point multiplication/division are performed in a manner

similar to floating point addition/subtraction, except that the sign,

exponent, and fraction of the result can be computed separately.

Like/unlike signs produce positive/negative results, respectively

 Exponent of result is obtained by adding/subtracting exponents

for multiplication/division. Fractions are multiplied or divided

according to the operation, and then normalized.

Example: Perform : (+.110  25) / (+.100  24)2

 The source operand signs are the same, which means that the

result will have a positive sign. We subtract exponents for

division, and so the exponent of the result is 5 – 4 = 1.

 We divide fractions, producing the result: 110/100 = 1.10.

 Putting it all together, the result of dividing (+.110  25) by

(+.100  24) produces (+1.10  21). After normalization, the

final result is (+.110  22).

2. Multiply the significands

4. Round the significand to the appropriate

number of bits

Start

No

YesOverflow or
underflow?

Exception

3. Normalize the product if necessary, shifting

it right and incrementing the exponent

1. Add the biased exponents of the two

numbers, subtracting the bias from the sum

to get the new biased exponent

Done

No
Still normalized?

Yes

5. Set the sign of the product to positive if the
signs of the original operands are the same;

if they differ make the sign negative

Floating Point

Multiplication

For addition (or subtraction) this translates into

the following steps:

(1) Compute Ye + Xe (adding exponents)

(2) doubly biased exponent must be corrected:

Xe = 7
Ye = -3
Excess 8

(3) Multiply the signficands

(4) Perform normalization

(4) Round the number to the specified size

(5) Calculate the sign of the product

Xe = 1111 = 15
Ye = 0101 = 5

10100 20

= 7 + 8
= -3 + 8

4 + 8 + 8

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Denormalized Numbers

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 The smallest single precision normalized number

is 1.0000 0000 0000 0000 0000 001  2-126

while the smallest single precision denormalized number is

0.0000 0000 0000 0000 0000 001  2-126 or 1.0  2-149

 The IEEE 754 standard allows some floating point number to

be denormalized in order to narrow the gap between 0 and

the smallest normalized number

 Demorlaized numbers are allowed to degrade in significance

until it becomes 0 (gradual underflow)

 The potential of occasional denormalized operands

complicates the design of the floating point unit

 PDP-11, VAX cannot represent denormalized numbers and
underflow to zero instead

Single Precision Double Precision Object represented

Exponent Significand Exponent Significand

0 0 0 0 0

0 Nonzero 0 Nonzero  de-normalized number

1-254 Anything 1-2046 Anything  floating-point number

255 0 2047 0  infinity

255 Nonzero 2047 Nonzero NaN (Not a Number)

Encoding of IEEE 754 Numbers

 Not a number, but not infinity (e.q. sqrt(-4))

 Generates invalid operation exception (unless operation is comparison)

 NaNs propagate: f(NaN) = NaN

NaN S 1 . . . 1 non-zero
HW decides what goes here

+/- infinity

 result of operation overflows, i.e., is larger than the largest number that

can be represented

 overflow is not the same as divide by zero (raises a different exception)

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

S 1 . . . 1 0 . . . 0

Conclusion
 Summary

 Representation of floating point numbers

(Sign, exponent, mantissa, single & double precision, IEEE 754)

 Floating point arithmetic

(Addition and Multiplication)

 Normalizing Floating point numbers

(Rounding, zero floating point number, special interpretation)

 Next Lecture

 Processor datapath and control

 Simple hardwired implementation

 Design of a control unit

Read section 3.5 in 5th Ed.

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

