
CMPE 411

Computer Architecture

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 8

Performing Division

Lecture’s Overview

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Algorithms for multiplying unsigned numbers

(Evolution of optimization, complexity)

• Booth’s algorithm for signed number multiplication

(Different approach to multiplying, 2-bit based operation selection)

• Multiple hardware design for integer multiplier

(Hardware cost-driven optimization , fast multiplication)

 This Lecture:

• Algorithms for dividing unsigned numbers

• Handling of sign while performing a division

• Hardware design for integer division

 Paper and pencil example (unsigned):

1001 Quotient

DividendDivisor 1000 1001010

–1000

10

101

1010

–1000

10 Remainder (or Modulo result)

 See how big a number can be subtracted, creating quotient bit on each

step Binary => 1 * divisor or 0 * divisor

 Dividend = Quotient x Divisor + Remainder

 3 versions of divide, successive refinement

Dividing Unsigned Numbers

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

* Slide is courtesy of Dave Patterson

Divide Hardware (version 1)

* Figure is courtesy of Dave Patterson

Remainder

Quotient
64-bitALU

 64-bit Divisor register, 64-bit ALU, 64-bit Remainder register, and 32-bit

Quotient register

 The 32-bit value of the Divisor starts in the left half of the 64-bit register

 The Divisor is shifted to the right every step to align with the Dividend

 The Remainder register is initialized with the value of the Dividend

Control decides when to shift the Divisor and the Quotient registers and when

to write new value into the Remainder register

Shift Right

Shift Left

Write
Control

32 bits

64 bits

Divisor

64 bits

Subtract

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Divide Algorithm Version 1

 If the Remainder is positive,

a 1 is generated in the Quotient

 A negative Remainder indicates that

Divisor did not go into the Dividend

 Shifting the Divisor in step 3 aligns

the Divisor with the Dividend for

next iteration

 Repeat for 33 times? (First iteration needs a

shift for divisor and last iteration needs a subtract)

Dividing two n-bit numbers needs

n+1 steps to generate n-bit

Quotient and Remainder

Done

Test Remainder

2a. Shift the Quotient register to the left,

setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

33rd repetition?

Start

Remainder < 0

No: < 33 repetitions

Yes: 33 repetitions

2b. Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0

1. Subtract the Divisor register from the

Remainder register and place the

result in the Remainder register

Remainder –>0

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

An Example

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Follow the division algorithm (version 1) to divide 7 by 2 using only 4-bit

binary representation

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1
1: Rem = Rem - Div 0000 0010 0000 1110 0111

2b: Rem < 0  +Div, shift left Q, Q0=0 0000 0010 0000 0000 0111

3: Shift right Divisor 0000 0001 0000 0000 0111

2
1: Rem = Rem - Div 0000 0001 0000 1111 0111

2b: Rem < 0  +Div, shift left Q, Q0=0 0000 0001 0000 0000 0111

3: Shift right Divisor 0000 0000 1000 0000 0111

3
1: Rem = Rem - Div 0000 0000 1000 1111 1111

2b: Rem < 0  +Div, shift left Q, Q0=0 0000 0000 1000 0000 0111

3: Shift right Divisor 0000 0000 0100 0000 0111

4
1: Rem = Rem - Div 0000 0000 0100 0000 0011

2a: Rem  0  shift left Q, Q0=1 0001 0000 0100 0000 0011

3: Shift right Divisor 0001 0000 0010 0000 0011

5
1: Rem = Rem - Div 0001 0000 0010 0000 0001

2a: Rem  0  shift left Q, Q0=1 0011 0000 0010 0000 0001

3: Shift right Divisor 0011 0000 0001 0000 0001

Divide Hardware (version 2)

* Figure is courtesy of Dave Patterson

 In the first version of divide hardware, half the bits in Divisor always 0

=> 1/2 of 64-bit adder is wasted & 1/2 of divisor is wasted

 Uses only 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register, and

32-bit Quotient register

Since the least significant bits of the Divisor would not change, the

Remainder could be shifted to the left instead of shifting the Divisor to the right

1st step cannot produce a 1 in quotient bit (divide by zero)

=> switch order to shift first and then subtract, can save 1 iteration

 The most significant 32-bits would be used by the ALU as a result register

Remainder

Quotient

Divisor

32-bitALU

Shift Left

Write

Control

32 bits

32 bits

64 bits

Shift Left

Subtract

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Divide Algorithm Version 2

Early shifting the remainder

register saves one iteration

Start: Place Dividend in Remainder

1. Shift the Remainder register left 1 bit.

Test Remainder

3b. Restore the original value by adding

the Divisor register to the left half of the

Remainder register, &place the sum in

the left half of the Remainder register.

Also shift the Quotient register to the left,

setting the new least significant bit to 0.

3a. Shift the Quotient

register to the left setting

the new rightmost bit to 1.

nth repetition?

End

No: < n repetitions

Yes: n repetitions (n = 4 here)

Remainder >= 0 Remainder < 0

2. Subtract the Divisor register from the left half

of the Remainder register, & place the result in

the left half of the Remainder register.

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

An Example

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Follow the division algorithm (version 2) to divide 7 by 2 using only 4-bit

binary representation

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0111

1
1: Shift Rem to left 1 0000 0010 0000 1110

2: Rem = Rem - Div 0000 0010 1110 1110

3b: Rem < 0  +Div, shift left Q, Q0=0 0000 0010 0000 1110

2
1: Shift Rem to left 1 0000 0010 0001 1100

2: Rem = Rem - Div 0000 0010 1111 1100

3b: Rem < 0  +Div, shift left Q, Q0=0 0000 0010 0001 1100

3
1: Shift Rem to left 1 0000 0010 0011 1000

2: Rem = Rem - Div 0000 0010 0001 1000

3: Shift left Quotient, Q0=1 0001 0010 0001 1000

4
1: Shift Rem to left 1 0001 0010 0011 0000

2: Rem = Rem - Div 0001 0010 0001 0000

3: Shift left Quotient, Q0=1 0011 0010 0001 0000

Divide Hardware Version 3

* Figure is courtesy of Dave Patterson

 Remainder register wastes space that exactly matches size of Quotient

 combine Quotient register and Remainder register

 Uses only 32-bit Divisor register, 32-bit ALU, 64-bit Remainder register,

and 0-bit Quotient register

The same number of shift operations would apply to both the Remainder and

the Quotient  the Remainder needs to be corrected at the end

 The most significant 32-bits are still being used by ALU as a result register

Divisor

Write

Control

64 bits

Shift Left“HI” “LO”

Remainder (Quotient)

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

32 bits

Subtract
32-bitALU

Divide Algorithm Version 3

 Eliminate Quotient register by combining

with Remainder and shifted left

 Remainder would be shifted an extra

time and need to be corrected at the end

Dividing 7 by 2

Done. Shift left half of Remainder right 1 bit

Test Remainder

3a. Shift the Remainder register to the
left, setting the new rightmost bit to 1

32nd repetition?

Start

Remainder < 0

No: < 32 repetitions

Yes: 32 repetitions

3b. Restore the original value by adding

the Divisor register to the left half of the

Remainder register and place the sum

in the left half of the Remainder register.

Also shift the Remainder register to the

left, setting the new rightmost bit to 0

2. Subtract the Divisor register from the

left half of the Remainder register and

place the result in the left half of the

Remainder register

1. Shift the Remainder register left 1 bit

Remainder>– 0

Iteration Step Divisor Remainder

0 Initial values 0010 00000111

Shift Rem left 1 0010 00001110

1
2: Rem = Rem -Div 0010 11101110

3b: Rem < 0 +Div, shift left R, R0=0 0010 00011100

2
2: Rem = Rem -Div 0010 11111100

3b: Rem < 0 +Div, shift left R, R0=0 0010 00111000

3
2: Rem = Rem -Div 0010 00011000

3a: Rem 0 shift left R,R0=1 0010 00110001

4
2: Rem = Rem -Div 0010 00010001

3a: Rem 0 shift left R,R0=1 0010 00100011

Shift left half of Rem right 1 0010 00010011

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Divide Hardware Version 3.”x86”

* Figure is courtesy of Dave Patterson

 The Intel x86 line does 64x32 bit division:

 Dividend is spread across 2 registers: EDX:EAX (same pair as mul)

 Could modify v3 architecture to initially load 64 bits into Remainder reg

Problem of overflow: what if Quotient > 32 bits?

 Can pre-test for this by seeing if Divisor > Dividend[64:33]

Divisor

Write

Control

64 bits

Shift Left“HI” “LO”

Remainder (Quotient)

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

32 bits

Subtract
32-bitALU

Can be combined

Multiply and

Divide logic

Divisor

32-bitALU

Write

Control

32 bits

64 bits

Shift Left“HI” “LO”

Remainder (Quotient)

Subtract

Product (Multiplier)

Multiplicand

32-bitALU

Write

Control

32 bits

64 bits

Shift Right

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Dividing Signed Numbers

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Simplest approach is to remember signs, make positive, and

complement quotient and remainder if necessary (the

following are not universal, however)

 Rule 1: Dividend and Remainder must have same sign

 Rule 2: Quotient negated if Divisor sign & Dividend sign

are different

Examples:

Dividend = Quotient Divisor + Remainder

7 ÷ 2 = 3, remainder = 1

–7 ÷ 2 = –3, remainder = –1

7 ÷ – 2 = –3, remainder = 1

–7 ÷ – 2 = 3, remainder = –1

MIPS division

• Instruction:

div R[rs], R[rt]

divu R[rs], R[rt]

Lo = R[rs]/R[rt]; Hi = R[rs] % R[rt]

• If one of the operands is negative, sign of

remainder is unspecified

• In SPIM simulator, depends on hosting

architecture

CMSC 411, Computer ArchitectureCourtesy
Mohamed Younis

Conclusion
 Summary

 Algorithms for dividing unsigned numbers

(Evolution of optimization, complexity)

 Handling of sign while performing a division

(Remainder sign matches the dividend’s)

 Hardware design for integer division

(Same hardware as Multiply)

 Next Lecture

 Representation of floating point numbers

 Floating point arithmetic

 Floating point hardware

Read section 3.4 in 5th Ed.

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

