CMSC 411
Computer Architecture

| ecture 6

Arithmetic Logic Unit

Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Lecture’s Overview

] Previous Lecture:

* Number representation
(Binary vs. decimal, Sign and magnitude, Two’s complement)

* Addition and Subtraction of binary numbers
(Sign handling, Overflow conditions)

* Logical operations
(Right and left shift, AND and OR)

J This Lecture:
* Constructing an Arithmetic Logic Unit
* Scaling bit operations to word sizes

* Optimization for carry generation

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Introduction
 Computer words are composed of bits, thus words can be

represented as binary numbers

d Although the natural number can be represented in binary:

=>» How are negative numbers represented?

= What is the largest number that can be represented in a
computer word

=> What happens if an operation creates a number bigger than
what can be represented?

=» What about fractions and real numbers?

= How does hardware really add, subtract, multiply, or divide
numbers?

=>» What are the implications of all of these on instruction sets?
2\

P)

% Courtesy CMSC 411, Computer Architecture 3

M~ ~cmmm o N~ s -

Unsigned Numbers

O Numbers can be represented in any base; humans prefer base 10 and
base 2 is best for computers
4 The first commercial computer did offer decimal arithmetic (binary decimal

coded number) and proved to be inefficient
O In any base the value of the ith digits d is: d x base!, where i starts at O and
Increases from right to left

Q Example; (1011), = (1 x 23),5+ (0 x 22) 1o+ (1 x 21) 1o+ (1 x 29) 1o
= 8 + 0 + 2 + 1 = (11) 10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0000 0000 0000|0000 OOOO0O|00O0OO0O|0O0O0O0C0O0O0 10112

T (32 bits wide) T

Most significant bit Least significant bit

0 The MIPS word is 32 bit long - 232 different numbers could be represented

(0000 0000 0000 0000 0000 0000 0000 0000), = (0) 10
(0000 0000 0000 0000 0000 0000 0000 0001),= (1) 10

(1111 1111 1111 1111 1111 11111111 1111), = (4, 294, 967, 295) 4,

Courtesy _ CMSC 411, Computer Architecture

ASCII versus Binary Numbers

dComputers were invented to crunch numbers, but very soon after
they were used to process text

dMost computers today use 8-bit bytes to represent characters using
the American Standard Code for Information Exchange (ASCII)

dIf numbers are represented as strings of ASCII digits they will need
significantly larger storage and arithmetic operations will be very slow

O Example:

What is the expansion in storage if the number 1 billion is
represented in ASCII versus 32-bit integer?

1 billion = 1, 000, 000, 000 =» it would need 10 ASCII digits (bytes)
Thus the storage expansion = (10 digits x 8 bits) / 32 = 2.5

Computer professionals are raised to believe that binary is natural ‘

% Courtesy CMSC 411, Computer Architecture 5

M~ ~cmmm o N~ s -

Sign and Magnitude Representation

L Computer programs calculate both positive & negative numbers
and thus the the number representation has to distinguish both

4 In sign and magnitude representation, a single bit is designated
either on the left or the right of the number to indicate its sign

O Although the sign and magnitude representation is very simple,
yet it has multiple shortcomings:

=> It is not obvious where to put the sign bit: to the right or the left?
=>» Adders may need an extra step to set the sign

=>» A separate sign bit means that there will be a positive and negative zero

 Example:
(+ 13)10 (01101)25|gn/magnltude (13) 10 — (11101)25|gn/magnltude

Sign and magnitude was shortly abandoned after their early use

P)

% Courtesy CMSC 411, Computer Architecture 6

M~ ~cmmm o N~ s -

Two’s Complement Representation

L The two's complement of a number X represented in n bits is 2"- X

O Negative numbers would always have one in the most significant bit
—> easy to be tested by hardware

O Advantages:
v There is only one zero in the two's complement
representation (programmer happy)

v/ Simple hardware design for arithmetic and logical
operations (Designer happy)

O Disadvantage:
» Most positive number is 2™1-1, while least negative number is -
21 (programmer unhappy)

 To compute the decimal value of a 32-bit two's compliment number the
following formula could be used:

(X3p x -231) + (X530 x 230) + (X9 x 229) + ...+ (X% 21) + (Xyx 29)

Example: (1111 1111 1111 1111 1111 1111 1111 1100),
= (1 x-23)+ (1 x230) + (1 x229) + ...+ (1 x22)+ (0 x 21) + (0 x 20)
/AN = (- 4)10

P)

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Numbers in a MIPS’ Word

(0000 0000 0000 0000 0000 0000 0000 0000),= (0) 10
(0000 0000 0000 0000 0000 0000 0000 0001),= (1) 10

(0000 0000 0000 0000 0000 0000 0000 0001),= (2) 10

(0111 111111111111 1111 1111 1111 1101),= (2, 147, 483, 645) .,
(0111 1111 1111 1111 1111 1111 1111 1110),= (2, 147, 483, 646) ,,
(0111 1111 1111 1111 1111 1111 1111 1111),= (2, 147, 483, 647) 1,
(1000 0000 0000 0000 0000 0000 0000 0000), = (- 2, 147, 483, 648) 4,
(1000 0000 0000 0000 0000 0000 0000 0001), = (- 2, 147, 483, 647) 1,
(1000 0000 0000 0000 0000 0000 0000 0010), = (- 2, 147, 483, 646) 1,

(111111711212121271 1171117111111 12101),=(- 3) 10
(1111 1717117121111 1711117111111 1110),=(- 2) 10
(1111 17171171211211 121121111 17111 1111),= (- 1) 10

» Two's complement does have one negative number that has no
corresponding positive number

» The most positive and the least negative number are different in all bits
/2

T -

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Quick negation for Two's Complement
Method 1:
» Convert every 120 and every 0->1 and then add 1 to the rest

Method 2:
© Move from right to left leave every leading O's until reaching the first 1
® Convert every 0->1 and 1->0 afterward until reaching the left end

Example. Negate (2)q0
(2) 10= (0000 0000 0000 0000 0000 0000 0000 0010),

Method 1: 1111 1111 1111 1111 1111 1111 1111 1101

1111 1111 1111 1111 1911 1111 1111 1110

Method 2: 0000 0000 0000 0000 0000 0000 0000 0010
— _
—~—

1111 1111 1111 1111 1111 1111 1111 1110

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Shortcuts for Two's Complement
a s .
» When loading numbers in a wide register, the empty bits will be filled with the
value of the sign bit

» Example: Convert 16-bit versions of (2),,and (-2),,to 32-bit binary numbers

=» The 16-bit binary version of the number (2),,is (0000 0000 0000 0010),
If converted to a 32-bit number by making 16 copies of the value in the most
significant bit (0) and placing that in the left-hand half of the word, we get

(0000 0000 0000 0000 0000 0000 0000 0010),

=>» For (-2),othe 16-bit binary version is (1111 1111 1111 1110), and again by making
16 copies of the value in the most significant bit (1) and placing that in the left-
hand half of the word, we get:

(1111 1111 1111 1111 1111 1111 1111 1110),

a

» Grouping every 4 binary digits is equivalent to converting to hexadecimal

» Example: (1110 1100 1010 1000 0110 0100 0010 0000), = (ECA8 6420)5
/a2

Campre e (e Lo

% Courtesy CMSC 411, Computer Architecture 1

M~ ~cmmm o N~ s -

Addition and Subtraction

U Digits are added bit by bit from right to left, with carries passed to the next
digit to the left

0 Example: O \N\O \®O\@® \ O \ (Canes)
0000 0000 0000 00000000 OIN1L= 7 ... 0 0 0 1 1 1
+ 0000 0000 0000 0000 0000 0110= 6 ... 0 0 0 1 1 0

-- ... 00 @O0 O @®1 @O (O1
0000 0000 0000 0000 0000 1101 = 13

O Subtraction uses addition: the appropriate operand is simply negated

O Example:
0000 0000 0000 0000 0000 00000000011 = 7

- 0000 0000 0000 0000 0000 0000 0000 0110= 6

0000 0000 0000 0000 0000 0000 00000001 = 1
Or using two’s complement arithmetic

0000 0000 0000 0000 0000 0000 0000 0111 = 7
+ 1111 1111 1111 1111 1111 11111111 1010=-6

/\ 0000 0000 0000 0000 0000 0000 00000001 = 1

% Courtesy CMSC 411, Computer Architecture 1

M~ ~cmmm o N~ s -

Arithmetic Overflow

1 Overflow occurs when the result of an operation cannot be represented with
the available hardware

O Most hardware detects and signals overflow via an exception

O Some high level languages ignore overflow (e.g. C) and some check for and
handle it (e.g. Ada and Fortran)

0 ! it

If there is either carry-in or carry-out (not both) for the sign bit

Operations Operand A Operand B Result
A+B >0 >0 <0
A+B <0 <0 >0
A-B >0 <0 <0
A-B <0 >0 >0
O Example:

Assuming 4 bits 2's complement numbers, the maximum positive number is 7 and
the least number is -8. Adding the numbers 6 and 5 should lead to overflow and
similarly for -6 and-5.

0110 + 0101 =1 011, 1010 + 1001 = 10011

VLN
g Courtesy

M~ ~cmmm o N~ s -

CMSC 411, Computer Architecture 1

Logical Operations

4 Although words are the basic blocks for most computers, it is often needed
to operate on fields of bits within a word (check for a character)

O Logical operations are useful for bit-wise handling of words

O AND, OR and shift operations are the most famous supported operations by
Instruction set architectures

O Shift operations are either right (divide), filling with the sign bit or left
(multiply), filling in with zeros

Examples: (0000 0010),<<2 = (0000 1000),
(1111 1110),<< 2 = (1111 1000),
(0000 0010),>>1 = (0000 0001),
(1111 1110),>> 1 = (1111 1111),

1 AND and OR operations are often used to isolate and augment words with
certain field of bits

Logical operations can miss up signed numbers =» should be carefully used

/a2

P)

% Courtesy CMSC 411, Computer Architecture 1

M~ ~cmmm o N~ s -

A 1-Bit Arithmetic Unit

—> Sum

Carryln
l
a —>»
b — _
I
CarryOut
Carryln

B

o—
P>
P> -
D=
—
L -

Inputs OQutputs
a b Carryln | CarryOut Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A single bit adder has 3 inputs, two operands
and a carry-in and generates a sum bit and a
carry-out to be passed to the next 1-bit adder

CarryOut = (b.CarryIn) + (a.Carryln) + (a.b) + (a.b.Carryln)

= (b.Carryln) + (a.Carryln) + (a.b)

Sum = (a.b.CarryIn) + (a.b.CarryIn) + (a.b.Carryln) + (a.b.Carryln) |

v
CarryOut

g Courtesy

Al o~ immom o N7~ 1 m b o~

CMSC 411, Computer Architecture

A 1-Bit ALU

Carlryln Carryln
a —» a — \ G\
+ — Sum —7 /
b —» > ¢l 1
l *~—> - Result
CarryOut ' ‘
1-Bit adder D N °
b — _/
v
CarryOut

» The multiplexor selects either a AND b,

a 7)
‘ ,D’_’ 0 a OR b or a + b depending on whether

>D—’ > Restlt the value of operation is 0, 1, or 2
1
" —/ » Toadd an operation, the multiplexor has
1-Bit logical unit to be expa_nded & a circuit for performing
/\ the operation has to be appended
1

iy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Supporting Subtraction

L Subtraction can be performed by inverting the operand and setting the
“Carryln” input for the adder to 1 (i.e. using two’s complement)

O By adding a multiplexor to the second operand, we can select either b or b

U The Binvert line indicates a subtraction operation and causes the two's
complement of b to be used as an input

a+b+l=a+(bb+1l)=a+(-b)=a-b

Carryln
a o—>_\ q\
L -/
The simplicity of the hardware o
design of a two’s complement -—»} > ' > Result
adder explains why it is a Y
universal standard for computer |° 0 + 2)
arithmetic o—1
Car;;/Out
£

% Courtesy CMSC 411, Computer Architecture 1

M~ ~cmmm o N~ s -

A 32-Bit ALU

4 A full 32-bit ALU can be created by
connecting adjacent 1-bit ALU’s
using the Carry in and carry out lines

1 The carry out of the least significant bit
can ripple all the way through the adder
(ripple carry adder)

 Ripple carry adders are slow since the
carry propagates from a unit to the next
sequentially

1 Subtraction can be performed by
Inverting the operand and setting the
“Carryln” input for the whole adder to 1
(i.e. using two’s complement)

/a2

Carryln

Operation

i

a0 —»|

b0 ™

Carryln

4

ALUO

CarryOut

y v

al —>

bl ™

A
Carryln

ALU1

CarryOut

y v

a2 —>

b2 =™

A
Carryln

ALU2

CarryOut

!

|

a3l —»

b31 ™

Carryln

ALU31

» ResultO

» Resultl

» Result2

» Result31

T -

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Supporting MIPS’ “s/t” instruction

Result

Binvert Operation
Carryln
a N\ | /)
ST
”—>,
y I
b — OW + 2
1
Less —|3
v
CarryOut

Most Significant Bit

-a<biff (a-b) <0
(value of sign bitis 1)

-Checks for overflow

- Sets the least
significant bit to the
value of sign bit

/a2

)

Basic 1-Bit ALU

Operation

Carryin

Less

/

vl

1

!
)
0

-“Less” input support
the “slt instruction

-“slt” produce 1 only if
rs<rt and O otherwise

» Result

3

detection

Overflow

» Set

» Overflow

Binvert

Carryln

Operation

vlv

a0 —»
b0 —

Carryln
ALUO

Less

\4

CarryOut

» Result0

Yy vy

al —>»

bl —>»
0 >

Carryin
ALU1

» Resultl

Less

CarryOut

Yy vy

a2 —»
b2 —»

Carryin
ALU2

Less
CarryOut

!

Carryln
\4 l \ 4

» Result2

Carryln
ALU31

Less

» Result31
Set

» Overflow

Most Significant Bit

32-Bit Basic MIPSALU

g Courtesy

M~ ~cmmm o N~ s -

CMSC 411, Computer Architecture

MIPS’ ALU

20—+ TN peguig -“bne” and “beq” instruction
g 1
| e compares two operands for
equality
il I I -a=biff (a-b) =0
0 —»| Less > . . .
CamyOu —'D—DC’—’ ze0 - Zero signal indicates all

zero results

A\
a2 —»| Carryln

b2 —»| ALUZ |ReSult2 >
0 —»| Less
CarryOut

| : —\

- G . 7o
>ALU—> Result
Result31 — Overflow
a3l — Carryln ‘r
b31 —» ALU31] ———— Set b —»
0 —» Less » Overflow
CarryOut
MIPS’ ALU Circuits ALU Symbol

Courtesy CMSC 411, Computer Architecture 19

M~ ~cmmm o N~ s -

| | | ,]
Optimizing Adder’s Design
Ripple Carry Adders
O The Carryln input depends on the operation in the adjacent 1-bitadder
O The result of adding most significant bits is only available after all other bits,
l.e. after n-1 single-bit additions

O The sequential chain reaction is too slow to be used in time-critical hardware

Carry Lookahead

O Anticipate the value of the carry ahead of time
O Worst-case scenario is a function of log, n (the number of bits in the adder)
O It takes many more gates to anticipate the carry

ing “Infinite” Hard
Using the equation: Cou= (b.Cyy) + (@.Cyp) +(@b) |

c2=(bl.cl)+(@l.cl)+(al.bl)
cl=(b0.c0)+ (a0 .c0) + (a0 .b0)

Substituting the definition of c1 in c2 equation

c2=(al.a0.b0)+(al.a0.cO0)+(@l.b0.cO)+ (bl.a0.bO)+
(b1.a0.c0)+ (bl.b0.cO)+(al.bl)

= Number of gates grows exponentially when getting to higher bits in the adder
/2

P)

% Courtesy CMSC 411, Computer Architecture 2

M~ ~cmmm o N~ s -

Carry Lookahead (propagate &
generate)

20 S ,__1____ Civi = (bj. C) + (a. ¢) + (a;. b)
_ - |
| —_
b0 — g : : = (a. b)) + ci. (a+ by
|
| =0a+C.D,
1 1c1 =g0 + cQ o p0 S S
|
al _ —_ S | :
g ! I
bl _ D :: I a b c-out
I (11 - b
|y = . L. [0 0 0 il
| :CZ Sgl+g0epl+cOepOepl 1, 1y “propagate”
az2 - —S ! 2 0 c-in “propagate’
b2 9 =: , 1 1 1 “generate”
_ 0 : !
|
|
|
1 c3=g2+§lep2+g0eplep2+cOepleple p2
a3 —}—S |, |
g >| . > g
|
b3 - p :: I > p
______ J
/s \ 1 * Figure is courtesy of Dave Patterson

% Courtesy CMSC 411, Computer Architecture 2

M~ ~cmmm o N~ s -

Plumbing as Carry Lookahead Analogy

2o

The pipe will output
water if one of the
wrenches is turned
-~ to open a valve

% Courtesy CMSC 411, Computer Architecture 2

M~ ~cmmm o N~ s -

Cascaded Carry Look-ahead

1
—1—=1C CO U Consider a 4-bit adder with its carry
——L | lookahead logic as a building block
= '
—1A GO . .
= PO 1 Connect the 4-bit adders inripple
. I C1 =G0 +[C0ePO carry fashion
; A-bit — 4 Carry lookahead is done at a high level
— Adder [|
: [C2=Gl+[G0eP1+COePOeP1 Po=Ps. P2- P1. Po
] . — P1=P7. Ps- Ps- P4
—1 4-bit —
— Adder [|
T C3=G2+|GleP2+GOeP1leP2+COePOePleP2
— —_— » G
—1 4-bit — > p Go =03+ (P3.92) * (P3:P2-91) + (P3-P2:P1-00)
—| Adder | | G, =07+ (P7-96) + (P7-P6-Us) *+ (P7-Ps-P5-04)
~ } ca-
A\ C4=...
g Courtesy

M~ ~cmmm o N~ s -

CMSC 411, Computer Architecture 2

An Exam

Determine g;, p;, P;, G;and carry out (C,) vaIueE)for these two 16-bit numbers:

a 0001 1010 0011 0011
b: 1110 0101 1110 1011
Answer: Using the formula g;= (a;. b)) and p;= (a; + b))

g;: 0000 0000 0010 0011
p: 1111 1111 1111 1011

The “super” propagates (P,, P,, P,, P3) are calculated as follows:
Po = Ps. P2- P1- Po=0 P,=p7. Ps. Ps. P1=1

P> = Pu1. Pio- Po- Pg=1 P3 =P P1g- P13 P2 =1

The “super” generates (G,, G;, G,, G3) are calculated as follows:
Go=03* (P3.92) + (P3-P2-91) + (P3-P2-P1-9o) =0

G, =07+ (P7-96) + (P7-P6-95) + (P7-Pe-Ps-94) =1

Gy =011+ (P11-910) * (P11-P10-90) *+ (P11-P10-Pe-Gs) =0 G3=

J15 *+ (P15:014) * (P15-P14-013) + (P15-P14-013.912) =0

Finally carry-out (C,) Is:

"".7"5'"

Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Speed of Carry Generation

O There is a (gate) delay for an output to be

Carryln

ready once input signals are applied to a gate '
. . . .) a0 —>| Carryin
Q Time is estimated by simply counting e > Resul0-3
th bl = AL uo v
e number of gates along the longest a2 > "pol[p
GOp—— gl
path e
O Carry lookahead is faster because less ot
cascaded levels of logic gates are used E“g‘; camin v Resultd-7
O For a 16-bit ripple carry adder, carry-out is 52; AT L lpiea
. . 6 > ———>|gi+1
subject to 32 (16 x 2 for 1 -bit adder) gate ar— ’
1 Cascaded carry lookahead (C4) is delayed o
by only 5 gates (1 for p and g, 2 for G and 2 2§:’ camin + Resute-11
fPr C4) in a 16-bit adder Loy ALz b+
C rlryln g%(l):: G2 |—|gi+2
bll —»
a '—*: It takes two gates o3
:D_:ED— delay for Carry-OUt gg:: camin » Result12--15
. to be available in a 13— aws |
- . . al4 > P3 f[— Pi+3
b _HD_ single bit adder bla —31 e mere
b15~ > ci+4
AN Car;yOut CarryOut
N/ Courtesy CMSC 411, Computer Architecture 2

M~ ~cmmm o N~ s -

Conclusion
d Summary

= Constructing an Arithmetic Logic Unit

(Different blocks and gluing them together)

= Scaling bit operations to word sizes
(Ripple carry adder, MIPS ALU)

= Optimization for carry handling
(Measuring performance, Carry lookahead)

J Next [ecture
=» Algorithms for multiplying unsigned numbers
=» Booth'’s algorithm for signed number multiplication
=» Multiple hardware design for integer multiplier

Read sections (B.1 - B.6) in 59 Ed., or (3.1, C.5-C.6) in 4th Ed. Of the textbook
A

Campre e (e Lo

% Courtesy CMSC 411, Computer Architecture 2

M~ ~cmmm o N~ s -

