
CMSC 411

Computer Architecture

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 6

Arithmetic Logic Unit

Lecture’s Overview

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Number representation
(Binary vs. decimal, Sign and magnitude, Two’s complement)

• Addition and Subtraction of binary numbers
(Sign handling, Overflow conditions)

• Logical operations
(Right and left shift, AND and OR)

 This Lecture:

• Constructing an Arithmetic Logic Unit

• Scaling bit operations to word sizes

• Optimization for carry generation

Introduction

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

 Computer words are composed of bits, thus words can be

represented as binary numbers

 Although the natural number can be represented in binary:

 How are negative numbers represented?

What is the largest number that can be represented in a

computer word

What happens if an operation creates a number bigger than

what can be represented?

What about fractions and real numbers?

 How does hardware really add, subtract, multiply, or divide

numbers?

What are the implications of all of these on instruction sets?

Unsigned Numbers
 Numbers can be represented in any base; humans prefer base 10 and

base 2 is best for computers

 The first commercial computer did offer decimal arithmetic (binary decimal

coded number) and proved to be inefficient

 In any base the value of the ith digits d is: d  basei, where i starts at 0 and

increases from right to left

 Example: (1011)2 = (1  23)10 + (0  22) 10 + (1  21) 10 + (1  20) 10

31 30 29 28

=
27 26 25 24

8 + 0
23 22 21 20 19 18 17 16

+
15 14 13 12

2 +
11 10 9 8

1 = (11)10

7 6 5 4 3 2 1 0

0 1 0 1 1

(32 bits wide)

Least significant bitMost significant bit

 The MIPS word is 32 bit long  232 different numbers could be represented

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

(0000 0000 0000 0000 0000 0000 0000 0000)2 = (0) 10

(0000 0000 0000 0000 0000 0000 0000 0001)2 = (
…………………… …

1) 10

(1111 1111 1111 1111 1111 1111 1111 1110)2 = (4, 294, 967, 294)10

(1111 1111 1111 1111 1111 11111111 1111)2 = (4, 294, 967, 295) 10

ASCII versus Binary Numbers

Computers were invented to crunch numbers, but very soon after

they were used to process text

Most computers today use 8-bit bytes to represent characters using

the American Standard Code for Information Exchange (ASCII)

If numbers are represented as strings of ASCII digits they will need

significantly larger storage and arithmetic operations will be very slow

 Example:

What is the expansion in storage if the number 1 billion is

represented in ASCII versus 32-bit integer?

1 billion = 1, 000, 000, 000  it would need 10 ASCII digits (bytes)

Thus the storage expansion = (10 digits  8 bits) / 32 = 2.5

Computer professionals are raised to believe that binary is natural

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 5

Sign and Magnitude Representation
 Computer programs calculate both positive & negative numbers

and thus the the number representation has to distinguish both

 In sign and magnitude representation, a single bit is designated

either on the left or the right of the number to indicate its sign

 Although the sign and magnitude representation is very simple,

yet it has multiple shortcomings:

 It is not obvious where to put the sign bit: to the right or the left?

 Adders may need an extra step to set the sign

 A separate sign bit means that there will be a positive and negative zero

 Example:

(+ 13)10 = (01101)2 sign/magnitude (- 13) 10 = (11101)2 sign/magnitude

Sign and magnitude was shortly abandoned after their early use

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 6

Two’s Complement Representation

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 7

 The two's complement of a number X represented in n bits is 2n - X

 Negative numbers would always have one in the most significant bit

 easy to be tested by hardware

 Advantages:

✓ There is only one zero in the two's complement

representation (programmer happy)

✓ Simple hardware design for arithmetic and logical

operations (Designer happy)

 Disadvantage:

 Most positive number is 2n-1-1, while least negative number is -

2n-1 (programmer unhappy)

 To compute the decimal value of a 32-bit two's compliment number the

following formula could be used:

(X31  -231) + (X30  230) + (X29  229) + …. + (X1  21) + (X0  20)

Example: (1111 1111 1111 1111 1111 1111 1111 1100)2

= (1  -231) + (1  230) + (1  229) + …. + (1  22) + (0  21) + (0  20)

= (- 4)10

(0000 0000 0000 0000 0000 0000 0000 0000)2 = (0) 10

(0000 0000 0000 0000 0000 0000 0000 0001)2 = (1) 10

(0000 0000 0000 0000 0000 0000 0000 0001)2 = (2) 10

…………………… …

(0111 1111 1111 1111 1111 1111 1111 1101)2 = (2, 147, 483, 645) 10

(0111 1111 1111 1111 1111 1111 1111 1110)2 = (2, 147, 483, 646) 10

(0111 1111 1111 1111 1111 1111 1111 1111)2= (2, 147, 483, 647) 10

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 8

(1000 0000 0000 0000 0000 0000 0000 0000)2 = (- 2, 147, 483, 648) 10

(1000 0000 0000 0000 0000 0000 0000 0001)2 = (- 2, 147, 483, 647) 10

(1000 0000 0000 0000 0000 0000 0000 0010)2 = (- 2, 147, 483, 646) 10

…………………… …

(1111 1111 1111 1111 1111 1111 1111 1101)2 =(- 3) 10

(1111 1111 1111 1111 1111 1111 1111 1110)2 =(- 2) 10

(1111 1111 1111 1111 1111 1111 1111 1111)2 = (- 1) 10

Numbers in a MIPS’ Word

 Two's complement does have one negative number that has no

corresponding positive number

 The most positive and the least negative number are different in all bits

Quick negation for Two's Complement
Method 1:

• Convert every 10 and every 01 and then add 1 to the rest

Method 2:

 Move from right to left leave every leading 0's until reaching the first 1

 Convert every 01 and 10 afterward until reaching the left end

Example: Negate (2)10

(2) 10 = (0000 0000 0000 0000 0000 0000 0000 0010)2

Method 1: 1111 1111 1111 1111 1111 1111 1111 1101
+ 1

--

1111 1111 1111 1111 1111 1111 1111 1110

Method 2: 0000 0000 0000 0000 0000 0000 0000 0010

1111 1111 1111 1111 1111 1111 1111 1110

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 9

Shortcuts for Two's Complement

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

0

 Sign extension

 When loading numbers in a wide register, the empty bits will be filled with the

value of the sign bit

 Example: Convert 16-bit versions of (2)10 and (-2)10 to 32-bit binarynumbers

 The 16-bit binary version of the number (2)10 is (0000 0000 0000 0010)2.

If converted to a 32-bit number by making 16 copies of the value in the most

significant bit (0) and placing that in the left-hand half of the word, we get

(0000 0000 0000 0000 0000 0000 0000 0010)2

 For (-2)10 the 16-bit binary version is (1111 1111 1111 1110)2 and again by making

16 copies of the value in the most significant bit (1) and placing that in the left-

hand half of the word, we get:

(1111 1111 1111 1111 1111 1111 1111 1110)2

 Grouping Binary Numbers

 Grouping every 4 binary digits is equivalent to converting to hexadecimal

 Example: (1110 1100 1010 1000 0110 0100 0010 0000)2 = (ECA8 6420)16

(0) (0) (1) (1) (0) (Carries)

0 0 0 1 1 1

0 0 0 1 1 0

(0)0 (0)0 (0)1 (1)1 (1)0 (0)1

Addition and Subtraction

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

1

 Digits are added bit by bit from right to left, with carries passed to the next

digit to the left

 Example:

0000 0000 0000 0000 0000 0111 = 7

+ 0000 0000 0000 0000 0000 0110 = 6

--

0000 0000 0000 0000 0000 1101 = 13

 Subtraction uses addition: the appropriate operand is simply negated

 Example:
0000 0000 0000 0000 0000 0000 0000 0111 = 7

- 0000 0000 0000 0000 0000 0000 0000 0110 = 6

--

0000 0000 0000 0000 0000 0000 0000 0001 = 1

Or using two’s complement arithmetic

0000 0000 0000 0000 0000 0000 0000 0111 = 7

+ 1111 1111 1111 1111 1111 1111 1111 1010 = - 6

--

0000 0000 0000 0000 0000 0000 0000 0001 = 1

Operations Operand A Operand B Result

A + B  0  0 < 0

A + B < 0 < 0  0

A - B  0 < 0 < 0

A - B < 0  0  0

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

2

Arithmetic Overflow
Overflow occurs when the result of an operation cannot be represented with

the available hardware

Most hardware detects and signals overflow via an exception

 Some high level languages ignore overflow (e.g. C) and some check for and

handle it (e.g. Ada and Fortran)

Overflow conditions

If there is either carry-in or carry-out (not both) for the sign bit

 Example:

Assuming 4 bits 2's complement numbers, the maximum positive number is 7 and

the least number is -8. Adding the numbers 6 and 5 should lead to overflow and

similarly for -6 and-5.

0110 + 0101 = 1 011, 1010 + 1001 = 10011

Logical Operations
 Although words are the basic blocks for most computers, it is often needed

to operate on fields of bits within a word (check for a character)

 Logical operations are useful for bit-wise handling of words

 AND, OR and shift operations are the most famous supported operations by

instruction set architectures

 Shift operations are either right (divide), filling with the sign bit or left

(multiply), filling in with zeros

Examples: (0000 0010)2 << 2

(1111 1110)2 << 2

(0000 0010)2 >> 1

(1111 1110)2 >> 1

 (0000 1000)2

 (1111 1000)2

 (0000 0001)2

 (1111 1111)2

 AND and OR operations are often used to isolate and augment words with

certain field of bits

Logical operations can miss up signed numbers  should be carefully used

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

3

A 1-Bit Arithmetic Unit
I npu ts O u t p u t s

a b Carr yIn C a r r yO u t S u m

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1CarryOut

CarryIn

a

Sum

b

A single bit adder has 3 inputs, two operands

and a carry-in and generates a sum bit and a

carry-out to be passed to the next 1-bit adder

CarryOut  (b.CarryIn) (a.CarryIn) (a.b)  (a.b.CarryIn)
 (b.CarryIn) (a.CarryIn) (a.b)

b

Sum  (a.b.CarryIn)  (a.b.CarryIn)  (a.b.CarryIn)  (a.b.CarryIn)

CarryOut

a

CarryIn

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

4

b

0

1

Result

Operation

a

1-Bit logical unit

A 1-Bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

 The multiplexor selects either a AND b,

a OR b or a + b depending on whether

the value of operation is 0, 1, or 2

 To add an operation, the multiplexor has

to be expanded & a circuit for performing

the operation has to be appended

Sum

CarryIn

CarryOut

a

b

1-Bit adder

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

5

Supporting Subtraction

0

2

R e su lt

a

1

O pe ration

CarryIn

CarryOut

0

1

Binvert

b

 Subtraction can be performed by inverting the operand and setting the

“CarryIn” input for the adder to 1 (i.e. using two’s complement)
_

The simplicity of the hardware

design of a two’s complement

adder explains why it is a

universal standard for computer

arithmetic

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

6

 By adding a multiplexor to the second operand, we can select either b or b

 The Binvert line indicates a subtraction operation and causes the two’s

complement of b to be used as an input

a  b 1 a  (b 1)  a  (b)  a  b

A 32-Bit ALU

Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

7

CarryIn

ALU0

CarryOut

CarryIn

ALU1

CarryOut

CarryIn

ALU2

CarryOut

CarryIn

ALU31

 A full 32-bit ALU can be created by

connecting adjacent 1-bit ALU’s

using the Carry in and carry out lines

 The carry out of the least significant bit

can ripple all the way through the adder

(ripple carry adder)

Ripple carry adders are slow since the

carry propagates from a unit to the next

sequentially

 Subtraction can be performed by

inverting the operand and setting the

“CarryIn” input for the whole adder to 1

(i.e. using two’s complement)

Supporting MIPS’ “slt” instruction

Set

Result0

Result1

Result2

a0

b0

a2

b2

0

Result31

Overflow

Binvert CarryIn Operation

CarryIn

Less

CarryIn

ALU0

CarryOut

Less

a1 CarryIn

b1 ALU1

0

CarryOut

Less

CarryIn

ALU2

CarryOut

a31 CarryIn

b31 ALU31

0 Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow

detection
Overflow

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

Most Significant Bit

Basic 1-Bit ALU

-“Less” input support

the “slt instruction

-“slt” produce 1 only if

rs<rt and 0 otherwise

32-Bit Basic MIPS ALU

Most Significant Bit

-a < b iff (a-b) < 0

(value of sign bit is 1)

-Checks for overflow

- Sets the least

significant bit to the

value of sign bit

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

8

Set

Result0

Result1

Result2

Operation

a31

b31

0

a0

b0

a2

b2

0

Result31

Overflow

Bnegate

Zero

CarryIn

ALU0

Less

CarryOut

a1 CarryIn

b1 ALU1

0 Less

CarryOut

CarryIn

ALU2

Less

CarryOut

CarryIn

ALU31

Less

MIPS’ ALU
Conditional Branching

-“bne” and “beq” instruction

compares two operands for

equality

-a = b iff (a-b) = 0

- Zero signal indicates all

zero results

ALU

Zero

Result

Overflow

a

b

ALU operation

CarryOut

ALU SymbolMIPS’ ALU Circuits

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 191

9

Ripple Carry Adders

 The CarryIn input depends on the operation in the adjacent 1-bit adder

 The result of adding most significant bits is only available after all other bits,

i.e. after n-1 single-bit additions

 The sequential chain reaction is too slow to be used in time-critical hardware

Carry Lookahead

 Anticipate the value of the carry ahead of time

 Worst-case scenario is a function of log2 n (the number of bits in the adder)

 It takes many more gates to anticipate the carry

Fast Carry Using "Infinite" Hardware

Using the equation:

c2 = (b1 . c1) + (a1 . c1) + (a1 . b1)

c1 = (b0 . c0) + (a0 . c0) + (a0 . b0)

Substituting the definition of c1 in c2 equation

c2 = (a1 . a0 . b0) + (a1 . a0 . c0) + (a1 . b0 . c0) + (b1 . a0 . b0) +

(b1 . a0 . c0) + (b1 . b0 . c0) + (a1.b1)

 Number of gates grows exponentially when getting to higher bits in the adder

Optimizing Adder’s Design

COut  (b.Cin) (a.Cin) (a.b)

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

0

a b c-out

0 0 0 “kill”

1 1 c-in “propagate”

2 0 c-in “propagate”

1 1 1 “generate”

p = a or b

g = a and b

a0 S

b0

a1

b1

S
g
p

a2

b2

S

a3

b3

S

c-in

c1 =g0 + c0  p0

c2 = g1 + g0  p1 + c0  p0  p1

c3 = g2 + g1  p2 + g0  p1  p2 + c0  p0  p1  p2

g

p

g
p

g
p

g
p

ci+1 = (bi . ci) + (ai . ci) + (ai . bi)

= (ai . bi) + ci . (ai + bi)

= gi + ci . pi

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

1

Carry Lookahead (propagate &

generate)

* Figure is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

2

C

L

A

4-bit

Adder

4-bit

Adder

4-bit

Adder

C2 = G1 + G0  P1 + C0  P0  P1

C3 = G2 + G1  P2 + G0  P1  P2 + C0  P0  P1  P2

G

P

G0
P0
C1 =G0 + C0  P0

C4 = . . .

C0

Cascaded Carry Look-ahead

Consider a 4-bit adder with its carry

lookahead logic as a building block

Connect the 4-bit adders in ripple

carry fashion

 Carry lookahead is done at a high level

P0 = p3. p2. p1. p0

P1 = p7. p6. p5. p4

….

G0 = g3 + (p3.g2) + (p3.p2.g1) + (p3.p2.p1.g0)

G1 = g7 + (p7.g6) + (p7.p6.g5) + (p7.p6.p5.g4)

….

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

3

An Example

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

4

Determine gi, pi, Pi, Gi and carry out (C4) values for these two 16-bit numbers:

a:

b:

Answer:

0001 1010 0011 0011

1110 0101 1110 1011

Using the formula gi = (ai . bi) and pi = (ai + bi)

gi : 0000 0000 0010 0011

pi : 1111 1111 1111 1011

The “super” propagates (P0 , P1 , P2 , P3) are calculated as follows:

P0 = p3. p2. p1. p0 = 0

P2 = p11. p10. p9. p8 = 1

P1 = p7. p6. p5. p4 =1

P3 = p15. p14. p13. p12 =1

The “super” generates (G0 , G1 , G2 , G3) are calculated as follows:

G0 = g3 + (p3.g2) + (p3.p2.g1) + (p3.p2.p1.g0) = 0

G1 = g7 + (p7.g6) + (p7.p6.g5) + (p7.p6.p5.g4) = 1

G2 = g11 + (p11.g10) + (p11.p10.g9) + (p11.p10.p9.g8) = 0 G3 =

g15 + (p15.g14) + (p15.p14.g13) + (p15.p14.g13.g12) = 0

Finally carry-out (C4) is:

C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.C0) = 1

CarryIn

Result0--3

CarryIn

Result4--7

CarryIn

Result8--11

CarryIn

CarryOut

Result12--15

CarryIn

C1

C2

C3

C4

ALU0
P0
G0

ALU1
P1
G1

ALU2
P2
G2

ALU3
P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

pi + 2
gi + 2

pi + 3
gi + 3

ci + 4

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead u

Speed of Carry Generation

b

C a r r y O u t

a It takes two gates

delay for carry-out

to be available in a

single bit adder

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

5

 There is a (gate) delay for an output to be

ready once input signals are applied to a gate

 Time is estimated by simply counting

the number of gates along the longest

path

Carry lookahead is faster because less

cascaded levels of logic gates are used

 For a 16-bit ripple carry adder, carry-out is

subject to 32 (16  2 for 1 -bit adder) gate

 Cascaded carry lookahead (C4) is delayed

by only 5 gates (1 for p and g, 2 for G and 2

for C4) in a 16-bit adder
C a r r y In

Conclusion

 Summary

Constructing an Arithmetic Logic Unit

(Different blocks and gluing them together)

 Scaling bit operations to word sizes

(Ripple carry adder, MIPS ALU)

Optimization for carry handling

(Measuring performance, Carry lookahead)

 Next Lecture

 Algorithms for multiplying unsigned numbers

 Booth’s algorithm for signed number multiplication

 Multiple hardware design for integer multiplier

Read sections (B.1 – B.6) in 5rd Ed., or (3.1, C.5-C.6) in 4th Ed. Of the textbook

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

6

