
CMSC 411

Computer Architecture

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 5

Performance Benchmarks

Lecture’s Overview

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Why measuring computer performance is important & subtle
(Execution time is the only unimpeachable measure of performance)

• Different performance metrics
(response time, throughput, CPU time)

• Performance comparison

 This Lecture:

• Performance reports and summary

• Selection of programs for performance evaluation

• Widely used benchmark programs

• Example industry metrics (e.g. MIPS, MFLOP, etc.)

Metrics of Performance

Maximizing performance means

minimizing response (execution) time

1

Execution time
Performance 

Programming

Language

Compiler

Application

Transistors Wires Pins

ISA

Datapath

Control

Function Units

(millions) of Instructions per second: MIPS

(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Operations per second

Designer

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

User

* Figure is courtesy of Dave Patterson

Calculation of CPU Time

CPU time 
Instruction countCPI

Clock rate

Instr. Count CPI Clock Rate

Program X

Compi ler X X

Instruction Set X X

Organizat ion X X

Technology X

n

CPUclock cycles  CPIi Ci
i1

Where: Ci

CPIi
n

is the count of number of instructions of class i executed

is the average number of cycles per instruction for that instruction class

is the number of different instructionclasses

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

Performance Reports
Hardware

Model number Powerstation 550

CPU 41.67-MHz POWER 4164

FPU (floating point) Integrated

Number of CPU 1

Cache size per CPU 64K data/8k instruction

Memory 64 MB

Disk subsystem 2 400-MB SCSI

Network interface N/A

Software
OS type and revision AIX Ver. 3.1.5

Compiler revision AIX XL C/6000 Ver. 1.1.5

AIX XL Fortran Ver. 2.2

Other software None

File system type AIX

Firmware level N/A

System
Tuning parameters None

Background load None

System state Multi-user (single-user login)

Guiding principle is reproducibility (report environment & experiments setup)

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 5

Comparing & Summarizing Performance
Computer A Computer B

Program 1 (seconds) 1 10

Program 2 (seconds) 1000 100

Total time (seconds) 1001 110

Wrong summary can present a confusing picture
 A is 10 times faster than B for program 1

 B is 10 times faster than A for program 2

 Total execution time is a consistent summary measure

 The relative execution times for the same workload is an

informative performance summary
 Assuming that programs 1 and 2 are executing for the same number of

times on computers A and B

CPUPerformance (B)


Totel execution time (A)


1001
 9.1

CPUPerformance (A) Totel execution time (B) 110

Execution time is the only valid and unimpeachable measure of performance

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 6

Performance Summary (Cont.)

in

i1

Arithmetic Mean (AM) 
1 n

Execution_Time

n

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 7

Weighted Arithmetic Mean (WAM) wi Execution_Timei

i1

Time on A Time on B
Norm. to A Norm. to B

A B A B

Program 1 1 10 1 10 0.1 1

Program 2 1000 100 1 0.1 10 1

A M of t ime or normalized t ime 500.5 55 1 5.05 5.05 1

Weighted arithmetic means summarize performance while tracking exec. time

 Through the use of weights, a weighted arithmetic mean can adjust for different

running times, balancing the contribution of each benchmark in the summary

 Never calculate AM after normalizing exec. time relative to a reference machine

Where:

and

n is the number of programs executed

wi is a weighting factor that indicates the frequency of executing program #i
n

i1
with wi 1 0 wi 1

Performance Summary (Cont.)

 Geometric mean is suitable for reporting average normalized execution time

Where: n is the number of programs executed

With

n

Geometric Mean (GM)  nExecution_Time_ratioi

i1

 i 

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 8

i

 Xi  Geometric Mean  
Geometric Mean (Y) Y

Geometric Mean (Xi)

Time on A Time on B
Norm. to A Norm. to B

A B A B

Program 1 1 10 1 10 0.1 1

Program 2 1000 100 1 0.1 10 1

AM of time or normalized time 500.5 55 1 5.05 5.05 1

GM of time or normalized time 31.62 31.62 1 1 1 1

Performance Benchmarks

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 9

 Many widely-used benchmarks are small programs that

have significant locality of instruction and data reference

 Universal benchmarks can be misleading since hardware

and compiler vendors might optimize their design for ONLY

these programs

 The best types of benchmarks are real applications since

they reflect the end-user interest

 Architectures might perform well for some applications and

poorly for others

 Compilation can boost performance by taking advantage of

architecture-specific features

 Application-specific compiler optimization are becoming

more popular

Effect of Compilation

App. and arch. specific optimization can dramatically impact performance

0

10 0

20 0

30 0

40 0

50 0

60 0

70 0

80 0

t om ca t vf ppppm at r i x300eqntot tlina sa 7do du cs p ic eespr essog c c

B en c h m a r k
Com pi l er

E n h a n c ed com pi ler

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 10

The SPEC Benchmarks
 SPEC stands for System Performance Evaluation Cooperative

suite of benchmarks

 SPEC is created by a set of companies to improve the

measurement and reporting of CPU performance

 SPEC2006 is the latest suite that consists of 12 integer and17

floating-point (in) programs (written in C, C++ and Fortran 77)

Customized SPEC suites have been recently introduced to

assess performance of graphics and transaction systems

 Since SPEC requires running applications on real hardware,

the memory system has a significant effect on performance

SPEC ratio 
Execution time on SUN SPARCstation 10/40

Execution time on the measure machine

 Bigger numeric values of the SPEC ratio indicate

faster machine (performance = 1/execution time)
courtesy
Mohamed Younis

CMSC 411, Computer Architecture 11

Clock rate (MHz)
Pentium

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Clock rate (MHz)

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

Comments & Observations:

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 12

 The performance measured may be different on other Pentium-based

hardware with different memory system and using different compilers

At the same clock rate, the SPECint95 measure shows that Pentium Pro is

1.4-1.5 times faster while the SPECfp95 shows that it is 1.7-1.8 times faster

(mostly due to enhanced internalarchitecture)

 When the clock rate is increased by a certain factor, the processor performance

increases by a lower factor most notably in the SPECfp95

(due to memory system)

 Performance of large applications is more sensitive to memory system

SPEC95 for Pentium and Pentium Pro

SPEC Benchmarks www.spec.org

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 13

Integer benchmarks FP benchmarks

gzip compression wupwise Quantum chromodynamics

vpr FPGA place & route swim Shallow water model

gcc GNU C compiler mgrid Multigrid solver in 3D fields

mcf Combinatorial optimization applu Parabolic/elliptic pde

crafty Chess program mesa 3D graphics library

parser Word processing program galgel Computational fluid dynamics

eon Computer visualization art Image recognition (NN)

perlbmk perl application equake Seismic wave propagation

simulation

gap Group theory interpreter facerec Facial image recognition

vortex Object oriented database ammp Computational chemistry

bzip2 compression lucas Primality testing

twolf Circuit place & route fma3d Crash simulation fem

sixtrack Nuclear physics accel

apsi Pollutant distribution

http://www.spec.org/

Example SPEC 2000 Ratings

* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 14

Using MIPS as a Performance Metric

MIPS stands for Million Instructions Per Second and is one of

the simplest metrics, which is valid in a limited context

Instruction count

Execution time 106
MIPS (native MIPS) 

 There are three problems with MIPS:

MIPS specifies the instruction execution rate but does not take into

account the capabilities of the instructions

 Computers does not have the same MIPS rating, as MIPS varies

between programs on the same computer

MIPS can vary inversely with performance (see next example)

The use of MIPS is simple and intuitive, faster machines have bigger MIPS

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 15

Example
Consider the machine with the following three instruction classes and CPI:

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 16

Now suppose we measure the code for the same program from two different

compilers and obtain the following data:

Assume that the machine’s clock rate is 500 MHz. Which code sequence will

execute faster according to MIPS? According to execution time?

Answer:

Instruction class CPI for this instruction class

A 1

B 2

C 3

Code from
Instruction count in (billions) for each

instruction class

A B C

Compiler 1 5 1 1

Compiler 2 10 1 1

n

i1

CPU clock cycles CPIi CiUsing the formula:

Sequence 1:

Sequence 2:

CPU clock cycles = (5 1 + 1 2 + 1 3)  109 = 10109 cycles

CPU clock cycles = (10 1 + 1 2 + 1 3)  109 = 15109 cycles

Example (Cont.)

Sequence 1:

Sequence 2:

Execution time = (10109)/(500106) = 20 seconds

Execution time = (15109)/(500106) = 30 seconds

Therefore compiler 1 generates a faster program

Clock rate
Exection time 

CPU clock cycles
Using the formula:

Instruction count

Execution time 106
MIPS Using the formula:

20106

9

MIPS 
(5 1 1)10

Sequence 1: = 350

(10 1 1)109

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 17

MIPS Sequence 2: = 400
30 106

Although compiler 2 has a higher MIPS rating, the code from generated by

compiler 1 runs faster

Historic Perspective

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 18

 In early computers most instructions of a machine took the

same execution time of others

 The measure of performance for old machines was the time

required for performing an individual operation (e.g. addition)

New computers have diverse set of instructions that require

different execution time

 The relative frequency of instructions across many programs

was calculated

 The average instruction execution time was measured by

multiplying the time of each instruction by its frequency

 The CPI is the average instruction execution time measured

in clock cycles

 The average instruction execution time was a small step to

MIPS that grew in popularity

Native, Peak and Relative MIPS, & FLOPS

Execution timeunrated

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 19

Relative MIPS 
Execution timereference MIPSreference

With the fast development in the computer technology, reference machine

cannot be guaranteed to exist

 Relative MIPS is practical for evolving design of the same computer

With the introduction of supercomputers around speeding up floating point

computation, the term MFLOP is introduced analogous to MIPS

 Peak MIPS is obtained by choosing an instruction mix that maximizes the

CPI, even if the mix is impractical

 To make MIPS more practical among different instruction sets, a relative

MIPS is introduced to compare machines to an agreed-upon reference

machine (e.g. Vax 11/780)

Synthetic Benchmarks

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 20

 Synthetic benchmarks are artificial programs that are constructed to match

the characteristics of large set of programs

Whetstone (scientific programs in Algol  Fortran) and Dhrystone (systems

programs in Ada  C) are the most popular synthetic benchmarks

Whetstone performance is measured in “Whetstone per second” – the

number of executions of one iteration of the whetstone benchmark

 Synthetic benchmarks suffer the following drawbacks:
1. They do not reflect the user interest since they are not real applications

2. They do not reflect real program behavior (e.g. memory access pattern)

3. Compiler and hardware can inflate the performance of these programs far

beyond what the same optimization can achieve for real-programs

Examples from the Dhrystone set:

 By assuming word alignment in string copy a 20-30% performance

improvement could be achieved, although 99.70-99.98% of typical string

copies could NOT use such optimization

 Compiler optimization could easily discard 25% of the Dhrystone code for

single iteration loops and inline procedure expansion

Amdahl’s Law
The performance enhancement possible with a given improvement

is limited by the amount that the improved feature is used

Execution time after improvement

Execution time affected by the improvement

Amount of improvement

 Execution time unaffected

 A common theme in Hardware design is to make the common case fast

 Increasing the clock rate would not affect memory access time

 Using a floating point processing unit does not speed integer ALU operations

Example: Floating point instructions improved to run 2X; but only 10% of

actual instructions are floating point

Exec-Timenew = Exec-Timeold x (0.9 + .1/2) = 0.95 x Exec-Timeold

Speedupoverall = Exec-Timeold / Exec-Timenew = 1/0.95 = 1.053

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 21

CDC 6600

NU 1108

ICL 1907 1.1 s

ATLAS

B5500

KDF9

Time
Instructions

executed

Code size in

instructions

Code size

in bits

12
11
10
9

8

7

6

5

4

3

2

1

 The Burroughs B5500 is designed specifically for Algol 60 programs

 Although CDC 6600’s programs are over 3 times as big as those of B5500,

yet the CDC machine runs them almost 6 times faster

 Code size cannot be used as an indication for performance

Can Hardware-Indep Metrics Predict Performance?

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 22

Other Performance Metrics
• Power consumption – especially in the embedded market

where battery life is important (and passive cooling)

* Slide is courtesy of Mary Jane Irwin

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 23

Designing for performance only without considering cost is unrealistic

In the supercomputing industry performance is the primary and

dominant goal

Low-end personal and embedded computers are extremely cost

driven

Performance depends on three major factors: number of instructions,

cycles consumed by instruction execution and the size of a clock cycle

 The art of computer design lies not in plugging numbers in a

performance equation, but in accurately determining how design

alternatives will affect performance and cost

 Design cost depends on many technical and non-technical factors

and is very challenging to evaluate

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 24

Final Remarks

Conclusion
 Summary

 Performance reports, summary and comparison
(Experiment reproducibility, arithmetic and weighted arithmetic means)

Widely used benchmark programs
(SPEC, Whetstone and Dhrystone)

 Example industry metrics
(e.g. MIPS, MFLOP, etc.)

 Increasing CPU performance can come from three sources
1. Increases in clock rate

2. Improvement in processor utilization that lower the CPI

3. Compiler enhancement that lower the instruction count or generate
instructions with lower CPI

 Next Lecture

 Number representation and Computer Arithmetic

 Addition, Subtraction and logical operations

Read section 1.9 in textbook

courtesy
Mohamed Younis

CMSC 411, Computer Architecture 25

