CMSC 411
Computer Architecture

| ecture 3

Addressing Mode & Architectural
Design Guidelines

courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Lecture’s Overview

] Previous Lecture:

* Instruction set architecture and CPU operations
(The stored-program concept)

* Instruction types, operands and operations
(R-type and I-type MIPS instructions format)

* Decision making and repetition of instruction execution
(bne, beq and j instructions)

* Supporting procedure and context switching
(Stack operations, nested procedure call, jal and jrinstructions)

J This Lecture:
* Other styles of MIPS addressing
* Program starting steps

* Architectural design guidelines
A

e s Lol g

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

MIPS Arithmetic Instructions

MIPS assembly language arithmetic statement
add $t0, $s1, $s2

sub-* " $t0, $s1, $s2

« Each arithmetic instruction performs only operation
« Each arithmetic instruction fits in 32 bits and specifies exactly
operands

destination <« sourcel . op - source2

« Operand order is fixed (destination first)

* Those operands are all contained in the datapath’s
($t0,$s1,$s2) — indicated by $

e\ * Slide is courtesy of Mary Jane Irwin

o i gy

% courtesy CMSC 411, Computer Architecture 3

ARl ~mma o~ A\~ 10 o~

MIPS Memory Access Instructions

« MIPS has two basic data transfer instructions for accessing
memory

lw $t0, 4($s3) #load word from memory
sw $t0, 8($s3) #store word to memory

« The data is loaded into (lw) or stored from (sw) a register in the
register file —a 5 bit address

 The memory address — a 32 bit address — is formed by adding
the contents of the base address register to the offset value

— A 16-bit field meaning access is limited to memory locations within a
region of £213 or 8,192 words (+£21°or 32,768 bytes) of the address in the
base register

— Note that the offset can be positive or negative

e\ * Slide is courtesy of Mary Jane Irwin

o i gy

% courtesy CMSC 411, Computer Architecture 4

ARl ~mma o~ A\~ 10 o~

MIPS Instruction format

J Reqister-format instructions:
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op: Basic operation of the instruction, traditionally called opcode
Is: The first register source operand
rt: The second register source operand
rd: The register destination operand, it gets the result of the operation
shmat: Shift amount (explained in future lectures)
funct: This field selects the specific variant of the operation of the op field
0 liate- : : _

op

s

rt

immediate

6 bits

5 bits

5 bits

16 bits

« Some instructions need longer fields than provided for large value constant

 The 16-bit address means a load word instruction can load a word within
a region of + 215pytes of the address in the base register

« Example: lw $t0, 32($s3) # Temporary register $t0 gets A[8]
Instruction | Format | op rs rt rd shamt funct address
add R 0 reg reg reg 0 32 N/A
sub R 0 reg reg reg 0 34 N/A
lw I 35 reg reg N/A N/A N/A address
/AN SwW I 43 reg reg N/A N/A N/A address
N/ courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Constant or Immediate Operands

L Use of constants is common in programs, e.g. incrementing an index of an
array, counting loop iterations, etc.

4 In the C compiler "gcc”, 52% of arithmetic operands involve constants while
In the circuit simulation program "spice" it is 69%
d Inefficient support:

Use memory address (AddrConstant4) to reference a stored constant
lw $t0, AddrConstant4($zero) # $t0 = constant 4

add $sp, $sp, $t0 # $sp = $sp + 4
O MIPS handles 16-bit constant efficiently by including the constant value in
the address field of an I-type instruction (Immediate-type)
addi $sp, $sp, 4 #$sp = $sp + 4

O For large constants that need more than 16 bits, a load upper-immediate (lui)
Instruction is used to concatenate the second part

lui $t0, 255 001111 00000 01000 0000 0000 1111 1111
Contents ‘4"'—"/———”——”’————”——’—/—

of $t0 after 0000 0000 1111 1111 0000 0000 0000 0000
execution

O The compiler or the assembler break large constants into 2 pieces and

reassemble them in a register
/2N

o i gy

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Addressing in Branches & Jumps

O I-type instructions leaves only 16 bits for address reference limiting the size
of the jump

1 MIPS branch instructions use the address as an increment to the PC

allowing the program to be as large as 2~ (called PC-relative addressing)

[Since the program counter gets incremented prior to instruction execution,
the branch address Is actually relative to (PC + 4)

O MIPS also supports an J-type instruction format for large jump instructions

op

address

6 bits

26 bits

O The 26-bit address in a J-type instruct., extended to 28, is concatenated to

upper 4 bits of PC
Loop:

Exit:

e\

o i gy

Y

add
add
add
lw

bne
add

j

$t1, $s3, $s3
$t1, $t1, $t1
$t1, $t1, $s6
$t0, 0($t1)
$t0, $s5, Exit
$s3, $s3, $s4
Loop

80000
80004
80008
80012
80016
80020
80024
80028
80032

0 19 19 9 0 32
0 9 9 9 0 32
0 9 22 9 0 32
35 9 8 0

5 8 21 8

0 19 20 19 0 32
2 80000

35 10 8 15

courtesy

ARl ~mma o~ A\~ 10 o~

CMSC 411, Computer Architecture

Aside: MIPS Register Convention

Name Register Usage Preserve

Number on call?
$zero 0 constant O (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 | saved values yes
$t8 - $t9 24-25 | temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

o courtesy

A~~~ A\~ 1

CMSC 411, Computer Architecture

Summary of MIPS Addressing Modes

1. Immediate addressing

op I rs I rt Immediate

2. Register addressing

op rs rt rd C funct Registers

[Register

3. Base addressing

op rs rt Address Memory

Register é_.] Halfword Word
: |

4. PC-relative addressing

op rs rt Address Memory

PC Word

5. Pseudodirect addressing

op Address Concatenation Memory

PC Word

courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Starting a Program

C program

.

Object files for Unix typically contains:
Header: size & position of components

Text segment: machine code

Data segment: static and dynamic variables
Relocation info: identify absolute memory ref.

Assembly language program

Symbol table: name & location of labels,

procedures and variables

Debugging info: mapping source to object

code, break points, etc.

Object: Machine language module Object: Library routine (machine language)

—
-
-
-
-
-

- Place code & data modules
symbolically in memory

-Determine the address of data &
Instruction labels

-Patch both internal & external ref.

—

Executable: Machine language program

e\

-

Memory

g courtesy

ARl ~mma o~ A\~ 10 o~

CMSC 411, Computer Architecture

Object file header

Linking

Name Procedure A
TeXt Size 100hex - -
Data size 20nex O b t F I
Text segment Address Instruction J e C I e S
0 Iw $a0, 0($gp)
4 jal 0
Data segment 0 X) \
Relocation Info Address | Instruction type | Dependency :
0 Iw X Executable file header
4 jal B Text size 300hex
Symbol table Label Address Data size S0nex
X - Text segment Address Instruction
B - 0040 0000hex Iw $a0,8000ne($gp)
0040 0004hex jal 40 0100nex
Object file header 0040 0100rec | w $al,8020e(Sap)
Name | ProcedureB 0040 0104 e« jal 40 0000rex
Text size 200nex . .
Data size SOhex Data segment Address
Text segment Address Instruction 1000 0000ne x
0 Iw $a0, 0($gp)
4 jal 0 1000 0020nex v)
Data segment 0 V) -
Relocation Info Address | Instruction type | Dependency
0 lw Y
4 jal A
Symbol table Label Address
Z\ : Assuming the value in $gp is 1000 8000,
VAN
% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Loading Executable Program

$sp —> Tfff ffff hex

$gp — 1000 8000 hex

1000 0000 hex

pc —% 0040 0000 o

e\

Stack

|

|

Dynamic data

Static data

Text

Reserved

Toload an executable, the operating system
follows these steps:

O Reads the executable file header to
determine the size of text and data segments

® Creates an address space large enough for
the text and data

© Copies the instructions and data from the
executable file into memory

O Copies the parameters (if any) to the main
program onto the stack

O Initializes the machine registers and sets the
stack pointer to the first free location

®Jumps to a start-up routines that copies the
parameters into the argument registers and
calls the main routine of the program

e b

Mg courtesy

ARl ~mma o~ A\~ 10 o~

CMSC 411, Computer Architecture

Classifying Instruction Set Architectures

O Accumulator Architecture

e Common in early stored-program computers when hardware was so expensive

e Machine has only one register (accumulator) involved in all math. & logical operations

e All operations assume the accumulator as a source operand and a destination for the
operation, with the other operand stored in memory

O Extended Accumulator Architecture
e Dedicated registers for specific operations, e.g., stack and array index registers, added

e The 8086 microprocessor is a an example of such special-purpose register arch.

1 General-Purpose Reqister Architecture
e MIPS is an example of such arch. where registers are not sticking to play a single role

e This type of instruction set can be further divided into:
e Register-memory: allows for one operand to be in memory
e Register-register (load-store): demands all operands to be inregisters

Machine # general-purpose Architecture style Year
registers
Motorola 6800 2 Accumulator 1974
DEC VAX 16 Register-memory, memory-memory | 1977
Intel 8086 1 Extended accumulator 1978
Motorola 68000 16 Register-memory 1980
Intel 80386 32 Register-memory 1985
PowerPC 32 Load-store 1992
/\. | DEC Alpha 32 Load-store 1992

o i gy

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Compact Code and Stack Architectures

dWhen memory is scarce, machines, like Intel 80x86 had variable-length
instructions to match varying operand specifications and minimize code size

Stack machines abandoned registers altogether arguing that it is hard for
compilers to use them efficiently

L Operands are to be pushed on a stack from memory and the results have to
be popped from the stack to memory

L Operations take their operand by default from the top of the stack and insert
the results back onto the stack

L Stack machines simplify compilers and lent themselves to a compact
instruction encoding

UExample: A=B+C

Push AddressC # Top=Top+4, Stack[Top]=Memory[AddressC]
Push AddressB # Top=Top+4, Stack[Top]=Memory[AddressB]
add # Stack[Top-4]=Stack[Top]+Stack[Top-4]; Top=Top-4
Pop AddressA # Memory[AddressA]=Stack[Top]; Top=Top-4

L Compact code is important for heralded network computers where programs
must be downloaded (e.g. Java-based applications) or space communications

e\

o i gy

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Famous ISA

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/load-store
|
Processor "t
TOS
Memor‘y LI I - e LI L] LN I

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Other types of Architecture

4 High-Level-Language Architecture

¢ |n the 1960s, systems software was rarely written in high-level languages and virtually
every commercial operating system before Unix was written in assembly

e Some people blamed the code density on the instruction set rather than the
programming language

¢ A machine design philosophy was advocated with the goal of making the hardware
more like high-level languages

e The effectiveness of high-level languages, memory size limitation and lack of efficient
compilers doomed this philosophy to a historicalfootnote

1 Reduced Instruction Set Architecture

¢ \With the recent development in compiler technology and expanded memory sizes less
programmers are using assembly level coding

e Instruction set architecture became measurable in the way compilers rather
programmable use them

¢ RISC architecture favors simplifying hardware design over enriching instruction
offering relying on compilers to effectively use them to perform complex operations

e Virtually all new architecture since 1982 follows the RISC philosophy of fixed

instruction lengths, load-store operations, and limited addressingmode
A

o i gy

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Principles of Hardware Designs

O Simplicity favors regularity
e Limited number of register formats
e Fixed number of operands

® Smaller is faster
¢ Increased number of registers lengthen signal paths
e Signals take longer when travelling farther = increasing clock cycle time
e It is not an absolute rule, 31 registers may not be faster than 32 registers

e Designers balance the craving of programs for more registers and the desire to
keep the clock cycle fast

® Good design demands good compromises
e Fixed length instructions requires different formats for different instructions’kinds

e Group the operation codes of instructions of similar format to simplify decoding
e Restrict the variation of different formats to limited number of fields and sort them
to a predictable order

® Make the common case fast
¢ Include program counter based addressing to speed up conditionalbranching
e Offer immediate addressing for constantoperands

e\

o i gy

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

Conclusion

d Summary
=» Various styles of MIPS addressing

(Register, displacement, immediate, PC-relative and pseudo-direct)

=» Program starting steps
(Compiler, Assembler, Linker, Loader)

=>» Architectural design guidelines
(keep it simple, focus on common cases, smart compromises)

J Next Lecture
= Why measuring computer performance is important
=» Different performance metrics
=» Performance comparison

Reading assignment is sections 2.8, 2.9, and 2.15 in textbook

e\

e s Lol g

% courtesy CMSC 411, Computer Architecture

ARl ~mma o~ A\~ 10 o~

