CMSC 341 Lecture 8

Announcements

My office hours changing:

M 12:15-2

W 12:15-1

Proj 1 grading

- make sure your program compiles and runs in submit directory
- all future projects named "Proj#"

Tree ADT

Tree definition

- A tree us a set if nodes.
- The set may be empty
- If not empty, then there is a distinguished node r, called *root* and zero or more non-empty subtrees T₁, T₂, ...
 T_k, each of whose roots are connected by a directed edge from r.

Basic Terminology

- Root of a subtree is a child of r. R is the parent.
- All children of a given node are called *siblings*.
- A *leaf* (or external) node has no children.

More Tree Terminology

A path from node V_1 to node V_k is a sequence of nodes such that V_i is the parent of V_i+1 for $1 \le i \le k$.

The *length* of this path is the number of edges encountered (k-1).

The *depth* of any node in a tree is the length of the path from root to the node.

All nodes of the same depth are at the same *level*.

The *depth of a tree* is the depth of its deepest leaf.

The *height* of any node in a tree is the length of the longest path from the node to a leaf.

The *height of a tree* is the height of its root.

Yet More Tree Terminology

The *internal path length* of a rooted tree is the sum of the depths of all of its nodes.

The *external path length* of a rooted tree is the sum of the depths of all the null pointers.

If there is a path from n_1 to n_2 , then n_1 is an *ancestor* of n_2 and n_2 is a *descendent* of n_1 .

Tree Storage

A tree node contains:

- Element
- Links
 - · to each child
 - · to sibling and first child

Binary Trees

- A *binary tree* is a rooted tree in which no node can have more than two children AND the children are distinguished as *left* and *right*.
- A *full BT* is a BT in which every node either has two children or is a leaf (every interior node has two children).

	Traversal
Inorder	
Preorder	
Postorder	

Proof of FBT

A FBT with n internal nodes has n+1 leaf nodes:

Base case: BT of one node (the root) has:

zero internal nodes

one external node (the root)

Inductive Assumption (assume for n):

 All FBT of up to and including n internal nodes have n+1 external nodes.

Proof (cont)

Inductive Step (prove for n+1):

- Let T be a FBT of n internal nodes.
- It therefore has n+1 external nodes.
- Enlarge T by adding two nodes to some leaf. These are therefore leaf nodes.
- Number of leaf nodes increases by 2, but the former leaf becomes internal.
- So,
 - # internal nodes becomes n+1,
 - # leaves becomes (n+1)+1 = n+2

Perfect BT

A *perfect BT* is a full BT in which all leaves have the same depth.

Proof of PBT

The number of nodes in a PBT is 2^{h+1} -1, where h is height.

Proof:

Notice that the number of nodes at each level is 2^1 .

So the total number of nodes is:

$$\sum_{l=0}^{h} 2^{l} = 2^{h+1} - 1$$

Prove this by induction:

Base case:

$$\sum_{l=0}^{0} 2^{l} = 2^{0} = 1 \iff 2^{0+1} - 1 = 2 - 1 = 1$$

Proof of PBT (cont)

Assume true for all $h \le H$

Prove for H+1:

$$\sum_{l=0}^{H+1} 2^l = \sum_{l=0}^{H} 2^l + 2^{H+1}$$

$$=2^{H+1}-1+2^{H+1}$$

$$=2^{H+2}-1$$

Complete BT

A *complete BT* is a perfect BT except that the lowest level may not be full. If not, it is filled from left to right.

Augmented BT

An *augmented binary tree* is a BT in which every unoccupied child position is filled by an additional "augmenting" node.