
1

CMSC 341
Lecture 14

Announcements
Proj3 due today
Proj4 up by midnight

2

Splay Trees
Concept

– adjust tree in response to accesses to make common
operations efficient

– after access node is moved to root by splaying
Performance

– amortized such that m operations take O(m lg n) where
n is the number of insertions

Splay Operation
Traverse tree from node x to root, rotating along the way until

x is the root
Each rotation

– If x is root, do nothing.
– If x has no grandparent, rotate x about its parent.
– If x has a grandparent,

• if x and its parent are both left children or both right children,
rotate the parent about the grandparent, then rotate x about its
parent

• if x and its parent are opposite type children (one left and the
other right), rotate x about its parent, then rotate x about its
new parent (former grandparent)

3

Operations in Splay Trees
insert

– first insert as in normal binary search tree
– than splay inserted node

find
– search for node
– if found, splay to root; otherwise splay last node on

path

Operations on Splay Trees (cont)
remove

– splay selected element to root
– disconnect left and right subtrees from root
– do one of:

• splay max item in TL (then TL has no right child)
• splay min item in TR (then TR has no left child)

– connect other subtree to empty child

4

Title:
splay.example.fig
Creator:
fig2dev Version 3.1 Patchlevel 2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
splay.insert_in_order.eps
Creator:
fig2dev Version 3.2 Patchlevel 0-beta2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

5

Title:
splay.zig_zag.eps
Creator:
fig2dev Version 3.2 Patchlevel 0-beta2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:
splay.zig_zig.eps
Creator:
fig2dev Version 3.2 Patchlevel 0-beta2
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

6

Performance of Splay Trees
insert

– regular bst insertion -- O(depth)
– splay: O(1) for each rotation, O(depth) rotations

Red-Black Trees
Concept

– BST with more relaxed notion of balance than AVL trees
– no path from N to leaf is more than twice as long as any other
– for RB tree with n nodes and height h, h ≤ 2 lg(n+1)

Definition: A red-black tree is a binary search tree where:
– Every node is either red or black.
– Each NULL pointer is considered to be a black node
– If a node is red, then both of its children are black.
– Every path from a node to a leaf contains the same number of black

nodes.

Definition: The height of a node n in a red-black tree is the
number of black nodes on any path to a leaf, not counting n.

7

RedBlackNode
template <class Comparable>
class RedBlackNode{

Comparable element;
RedBlackNode *left;
RedBlackNode *right;
int color;

RedBlackNode(const Comparable & theElement =
Comparable(), RedBlackNode *lt = NULL, RedBlackNode
*rt =NULL, int c = RedBlackTree<Comparable>::BLACK) :
element(theElement), left(lt), right(rt), color(c {}

friend class RedBlackTree<Comparable>;
};

RedBlackTree Class
template <class Comparable>
class RedBlackTree {
public:

explicit RedBlackTree (const Comparable &negInf);
RedBlackTree (const RedBlackTree &rhs);
~RedBlackTree();
enum {RED, BLACK};
// usual public member functions

private:
RedBlackNode<Comparable> *header;
const Comparable ITEM_NOT_FOUND;
RedBlackNode<Comparable> *nullNode;
RedBlackNode<Comparable> *current;
RedBlackNode<Comparable> *parent;
RedBlackNode<Comparable> *grand;
RedBlackNode<Comparable> *great;

8

RedBlackTree (cont.)
void handleReorient(const Comparable &item);
RedBlackNode<Comparable> *rotate(const Comparable
&item, RedBlackNode<Comparable> *parent) const;

// additional private member funcs
};

Constructor
template <class Comparable>
RedBlackTree<Comparable>::RedBlackTree(const Comparable

&negInf) : ITEM_NOT_FOUND(negInf) {
nullNode = new RedBlackNode<Comparable>;
nullNode->left = nullNode->right = nullNode;
header = newRedBlackNode<Comparable>(negInf);
header->left = header->right = nullNode;
}

