CMSC 341
Lecture 14

Announcements

Proj3 due today
Proj4 up by midnight

Splay Trees

Concept

— adjust tree in response to accesses to make common
operations efficient

— after access node is moved to root by splaying
Performance

— amortized such that m operations take O(m Ig n) where
nisthe number of insertions

Splay Operation

Traverse tree from node x to root, rotating along the way until
x istheroot

Each rotation
— If xisroot, do nothing.
— If x has no grandparent, rotate x about its parent.

— If x has agrandparent,

« if x and its parent are both left children or both right children,
rotate the parent about the grandparent, then rotate x about its
parent

« if x and its parent are opposite type children (one left and the
other right), rotate x about its parent, then rotate x about its
new parent (former grandparent)

Operationsin Splay Trees

insert
— first insert asin normal binary search tree
— than splay inserted node

find
— search for node

— if found, splay to root; otherwise splay last node on
path

Operations on Splay Trees (cont)

remove
— gplay selected element to root
— disconnect left and right subtrees from root

— do one of:
* splay max itemin T, (then T, has no right child)
» splay minitemin Ty (then T has no left child)

— connect other subtree to empty child

Title:

splay.example.fig

Creator:

fig2dev Version 3.1 Patchlevel 2
Preview:

This EPS picture was not saved
with a preview included in it
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:

splay.insert_in_order.eps

Creator:

fig2dev Version 3.2 Patchlevel 0-beta2
Preview:

This EPS picture was not saved

with a preview included in it
Comment:

This EPS picture will print to a
PostScript printer, but not to

other types of printers.

Title:

splay.zig_zag.eps

Creator:

fig2dev Version 3.2 Patchlevel 0-beta2
Preview:

This EPS picture was not saved
with a preview included in it.
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:

splay.zig_zig.eps

Creator:

fig2dev Version 3.2 Patchlevel 0-beta2
Preview:

This EPS picture was not saved
with a preview included in it
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Performance of Splay Trees

insert
— regular bst insertion -- O(depth)
— splay: O(1) for each rotation, O(depth) rotations

Red-Black Trees

Concept
— BST with more relaxed notion of balance than AVL trees
— no path from N to leaf is more than twice aslong as any other
— for RB tree with n nodes and height h, h £ 2 Ig(n+1)

Definition: A red-black tree isabinary search tree where:
— Every nodeis either red or black.
— Each NULL pointer is considered to be ablack node
— If anodeisred, then both of its children are black.
— Every path from anode to aleaf contains the same number of black
nodes.
Definition: The height of anode nin ared-black treeisthe
number of black nodes on any path to aleaf, not counting n.

RedBlackNode

t enpl at e <cl ass Conpar abl e>
cl ass RedBl ackNode{

Conpar abl e el enent;

RedBl ackNode *|eft;

RedBl ackNode *ri ght;

int color;

RedBl ackNode(const Conparabl e & theEl ement =

Conpar abl e(), RedBl ackNode *It = NULL, RedBl ackNode
*rt =NULL, int c¢ = RedBl ackTree<Conpar abl e>: : BLACK)

el enent (theEl ement), left(lt), right(rt), color(c {}

friend class RedBl ackTr ee<Conpar abl e>;
}s

RedBlackTree Class

tenpl ate <cl ass Conpar abl e>
cl ass RedBl ackTree {
public:
explicit RedBl ackTree (const Conparabl e &neglnf);
RedBl ackTree (const RedBl ackTree &rhs);
~RedBl ackTree();
enum { RED, BLACK};
/1 usual public nenber functions
private:
RedBl ackNode <Comnpar abl e> *header;
const Conpar abl e | TEM NOT_FOUND;
RedBl ackNode <Comnpar abl e> * nul | Node;
RedBl ackNode <Conpar abl e> *current;
RedBl ackNode <Comnpar abl e> *parent;
RedBl ackNode <Conpar abl e> *gr and;
RedBl ackNode <Conpar abl e> *great ;

RedBlackTree (cont.)

voi d handl eReori ent (const Conparable & tenj;

RedBl ackNode<Conpar abl e> *r ot at e(const Conpar abl e
& tem RedBl ackNode<Conpar abl e> *parent) const;

/1 additional private nenber funcs

}s

Congtructor

t enpl at e <cl ass Conpar abl e>

Red

Bl ackTr ee<Conpar abl e>: : RedBl ackTr ee(const Conparabl e

&negl nf) : | TEM NOT_FOUND(negl nf) {

nul | Node = new RedBl ackNode <Conpar abl e>;

nul | Node- >l eft = null Node->right = null Node;
header = newRedBl ackNode <Conpar abl e>(negl nf);
header - >l eft = header->right = null Node;

}

