
1

CMSC 341
Lecture 12

Announcements
Postponing Priority Queues until later

2

HashTable Class
template <class HashedObj>
class HashTable {
public:

explicit HashTable(const HashedObj) ¬Found, size=101);
HashTable(const HashTable &rhs) :
ITEM_NOT_FOUND(rhs.ITEM_NOT_FOUND),theLists(rhs.theLists){
}
const HashedObj &find(const HashedObj &x) const;
void makeEmpty();
void insert (const HashedObj &x);
void remove (const HashedObj &x);
const HashTable &operator=(const HashTable &rhs);

private:
vector<List<HashedObj>> theLists;
const HashedObj ITEM_NOT_FOUND;

};

3

Handling Collisions Revisited
Open addressing (aka closed hashing)

– all elements stored in the table itself (so table should be
large. Rule of thumb: M>= 2N)

– upon collision, item is hashed to a new (open) slot.
Hash function

h: U X {0,1,2,… .} → {0,1,… ,M-1}
h(k,I) = (h’(k) + f(I))mod m

for some h’: U → {0,1,… ,M-1}
and f(0) = 0

Each try is called a probe

Linear Probing
Function:

f(i) = ci

Example:
h’(k) = k mod 10 in a table of size 10 , f(i) = i
U={89,18,49,58,69}

4

Linear Probing (cont)
Problem: Clustering

– when table starts to fill up, performance → O(N)
Asymptotic Performance

– insertion and unsuccessful find, average
• # probes ≅ 1/2(1+1/(1-λ)2)
• if λ ≅ 1, the denominator goes to zero and the number of

probes goes to infinity

Linear Probing (cont)
Remove

– Can’t just use the hash function(s) to find the object,and
remove it, because objects that were inserted after x
were hashed based on x’s presence.

– Can just mark the cell as deleted so it won’t be found
anymore.

• Other elements still in right cells
• Table can fill with lots of deleted junk

5

Quadratic Probing
Function:

f(i) = c2i2 + c1i + c0

Example:
f(i) = i2, m=10
U={89,18,49,58,69}

Quadratic Probing (cont.)
Advantage:

– reduced clustering problem
Disadvantages:

– reduced number of sequences
– no guarantee that empty slot will be found if tablesize is

not prime

6

Double Hashing
Use two hash functions: h’1(k), h’2(k)

h(k,I) = (h’1(k) + ih’2(k)) mod M
Choosing h’2(k)

– don’t allow h’2(k) = 0 for any k.
– a good choice:

• h’2(k) = R - (k mod R) with R a prime smaller than M

Characteristics
– No clustering problem
– Requires a second hash function

Balanced Trees
Problem

– specific tree configuration dependent on order in which
nodes are inserted

– may become noticeably unbalanced, leading to
performance approaching worst case -- O(n)

Solution
– ensure that trees remain balanced (or pretty balanced),

no matter what

7

AVL Trees
Method

– impose balance condition: The height of the left and
right subtrees of a node can differ by no more than one.

– adjust structure after each insertion or deletion to
maintain balance condition; uses rotation

Pros and Cons
– guarantee O(lg n) performance
– lots of adjustments can make insertion expensive

Rotation Operation
To rotate about a node t and its left child l:

t->left = l->right;
l->right = t;

To rotate about a node t and its right child r:
t->right = r->left;
r->left = t;

8

Splay Trees
Concept

– adjust tree in response to accesses to make common
operations efficient

– after access node is moved to root by splaying
Performance

– amortized such that m operations take O(m lg n) where
n is the number of insertions

Splay Operation
Traverse tree from node x to root, rotating along the way until

x is the root
Each rotation

– If x is root, do nothing.
– If x has no grandparent, rotate x about its parent.
– If x has a grandparent,

• if x and its parent are both left children or both right children,
rotate the parent about the grandparent, then rotate x about its
parent

• if x and its parent are opposite type children (one left and the
other right), rotate x about its parent, then rotate x about its
new parent (former grandparent)

9

Title:
/tmp/xfig-fig000750
Creator:
fig2dev
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

