CMSC-341 Data Structures
Spring 2000 4 May 2000 Graphs Review

These are some review questions to test your understanding of the material. Some of these questions may appear
on an exam.

Graphs

0.1 Define graph, undirected graph, directed graph, and weighted graph, sparse graph.
0.2 Define path in a graph. Define length of a path in a graph.
0.3 Define the following:

1. Connected, undirected graph.

2. Strongly connected directed graph.
3. Weakly connected directed graph.

0.4 Let G = (V,E) be an undirected graph with V the set of vertices and E the set of edges. Let
V1,V2,...,0p € V be the members of V and let ¢ = |E| be the cardinality of E. Prove:

p
Z degree(v;) = 2q

i=1
0.5 Prove that in any undirected graph, the number of vertices of odd degree is even.

0.6 Write pseudo-code for breadth-first and depth-first traversals of undirected graphs. The code must be
complete and must fully describe the operations.

0.7 Describe, in English, any adjacency table graph implementation. How does the implementation differ for
directed and undirected graphs?

0.8 Describe, in English, any adjacency list graph implementation. How does the implementation differ for
directed and undirected graphs?

0.9 Given a drawing of a directed or of an undirected graph, show its representation as an adjacency matrix.
0.10 Draw the directed graph represented by the adjacency matrix given below. The rows/columns in the matrix corre-
spond to the vertices with labels A,B,C,D,E. A non-zero entry at [row,col] indicates that the vertex indicated by the
row label is adjacent-to the vertex indicated by the col label.

ABCDE
A01010
B11100
cCco00001
D010O01
E00000O



0.11 Given a drawing of a directed or of an undirected graph, show its representation as an adjacency list.
0.12 Draw the directed graph represented by the adjacency list given below. This is an “adjacent-to” representation.

v[1] (Label

A) -—> 2 --> 5

v[2] (Label

B) -->3 -->5

v[3] (Label = C) --> 2 --=> 4 --> b

v[4] (Label

D) --> 5

v[5] (Label

0.13 Discuss the characteristics of the adjacency table and adjacency list implementations of graphs. Include storage
requirements and asymptotic worst-case performance of the operations:

E) --> empty

Note: u and v are vertices in the graph

Degree (u) returns the degree of vertex u (undirected graphs)
InDegree (u) returns the indegree of vertex u (directed graphs)
OutDegree(u) returns the outdegree of vertex u (directed graphs)

AdjacentTo (u) returns a list of the vertices adjacent to u

AdjacentFrom(u) returns a list of the vertices adjacent from u

Connected(u,v) returns true if there is an edge between
vertices u and v, returns false otherwise

0.14 Consider the directed graph represented by the following adjacency matrix (an adjacent-to representation):

Moo=

List the depth-first and breadth-first traversals of the graph beginning at vertex A. Repeat for vertex B. (Whenever
a new vertex is to be visited and there is more than one possibility, use the vertex labelled with the letter than comes
first in the alphabet.)

0.15 Define directed acyclic graph.
0.16 Define topological ordering of a directed acyclic graph.
0.17 Given a drawing of a graph, find all cycles.

0.18 Given a drawing of a directed acyclic graph, write the labels of its vertices in topological order. Explain
how you obtained the ordering.

0.19 Given a drawing of a directed graph along with the “discovery” and “finish” times of its vertices after
a depth-first search, write the labels of the graph in topological order. Explain how you obtained the
ordering.

0.20 Given a drawing of a directed graph along with the “discovery” and “finish” times of its vertices after
a depth-first search, identify the type of each edge (tree, back, forward, or cross). The following test is
relevant, with d[v] the discovery time of vertex v and £ [v] its finish time:



if ( (d[v1] < d[v2]l) && (£[vil > f[v2]) )
(v1,v2) is a tree edge

else if (d[v1] > d[v2] && f[v1] < £[v2])
(v1,v2) is a back edge

else if (d[v1] > d[v2] && flv1i]l > f£[v2])
(v1,v2) is a cross edge

else // dlvi]l < d[v2] - 1 && flvi]l > f[v2]
(v1,v2) is a forward edge



