
1

CMSC 341-04
Lecture 3

Announcements
Project 1
Project Preview tonight

2

Mileage Example
Problem:

John drives his car, how much gas does he use?

Complexity
How many resources will it take to solve a problem of a given

size?
– time
– space

Expressed as a function of problem size (beyond some
minimum size)
– how do requirements grow as size grows?

Problem size
– number of elements to be handled
– size of thing to be operated on

3

Growth Functions
Constant

f(n) = c
ex: getting array element at known location

trying on a shirt
calling a friend for fashion advice

Linear
f(n) = cn [+ possible lower order terms]
ex: finding particular element in array (sequential search)

trying on all your shirts
calling all your n friends for fashion advice

Growth Functions (cont)
Quadratic

f(n) = cn2 [+ possible lower order terms]
ex: sorting all the elements in an array (using bubble sort)

trying all your shirts (n) with all your ties (n)
having conference calls with each pair of n friends

Polynomial
f(n) = cnk [+ possible lower order terms]
ex: looking for maximum substrings in array

trying on all combinations of k separates (n of each)
having conferences calls with each k-tuple of n friends

4

Growth Functions (cont)

Exponential
f(n) = cn [+ possible lower order terms
ex: constructing all possible orders of array elements

Logarithmic
f(n) = logn [+ possible lower order terms]
ex: finding a particular array element (binary search)

trying on all Garanimal combinations
getting fashion advice from n friends using phone tree

Asymptotic Analysis
What happens as problem size grows really, really large? (in

the limit)
– constants don’t matter
– lower order terms don’t matter

5

Analysis Cases
What particular input (of given size) gives worst/best/average

complexity?

Mileage example: how much gas does it take to go 20 miles?
– Worst case: all uphill
– Best case: all downhill, just coast
– Average case: “average terrain”

Cases Example
Consider sequential search on an unsorted array of length n,

what is time complexity?

Best case:

Worst case:

Average case:

6

Complexity Bounds
Upper bound (big O):

T(n) = O(f(n)) if
T(n) ≤ cf(n) for some constants c, n0 and n ≥ n0

Lower bound (omega):
T(n) = Ω (g(n)) if

T(n) ≥ cg(n) for some constants c, n0 and n ≥ n0

“Exact” bound (theta):
Τ(n) = Θ (h(n)) if
 T(n) = O(h(n)) and T(n) = Ω(h(n))

“Greater” bound (little o):
T(n) = o(p(n)) if

T(n) = O(p(n)) and T(n) ≠ Θ (p(n))

Simplifying Assumptions
1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
2. If f(n) = O(kg(n) for any k > 0, then f(n) = O(g(n))
3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),

then f1(n)+f2(n) = O(max(g1(n),g2(n)))
4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),

then f1(n)f2(n) = O(g1(n) g2(n))

7

Example
Code:

a = b;

Complexity:

Example
Code:

sum = 0;
for (i=1; i <=n; i++)

sum += n;

Complexity:

8

Example
Code:

sum = 0;
for (j=1; j<=n; j++)

for (i=1; i<=j; i++)
sum++;

for (k=0; k<n; k++)
A[k] = k;

Complexity:

Example
Code:

sum1 = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum1++;

Complexity:
Code:

sum2 = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum2++;

Complexity:

9

Example
Code:

sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

Complexity:
Code:

sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;

Complexity:

