
CMSC 341 Asymptotic Anaylsis 1

CMSC 341

Asymptotic Analysis

CMSC 341 Asymptotic Anaylsis 2

Complexity

  How many resources will it take to solve a
problem of a given size?
  time
  space

  Expressed as a function of problem size (beyond
some minimum size)
  how do requirements grow as size grows?

  Problem size
  number of elements to be handled
  size of thing to be operated on

CMSC 341 Asymptotic Anaylsis 3

The Goal of Asymptotic Analysis

  How to analyze the running time (aka computational
complexity) of an algorithm in a theoretical model.

  Using a theoretical model allows us to ignore the
effects of
  Which computer are we using?
  How good is our compiler at optimization

  We define the running time of an algorithm with input
size n as T (n) and examine the rate of growth of
T(n) as n grows larger and larger and larger.

CMSC 341 Asymptotic Anaylsis 4

Growth Functions

  Constant
 T(n) = c
 ex: getting array element at known location
 any simple C++ statement (e.g. assignment)
  Linear
 T(n) = cn [+ possible lower order terms]
 ex: finding particular element in array of size n

 (i.e. sequential search)
 trying on all of your n shirts

CMSC 341 Asymptotic Anaylsis 5

Growth Functions (cont.)

  Quadratic
 T(n) = cn2 [+ possible lower order terms]
 ex: sorting all the elements in an array (using bubble sort)
 (trying all your n shirts with all your n ties)

  Polynomial
 T(n) = cnk [+ possible lower order terms]
 ex: maximum matching problems in graph (we will talk

about this later in the semester)

CMSC 341 Asymptotic Anaylsis 6

Growth Functions (cont.)

  Exponential
 T(n) = cn [+ possible lower order terms]
 ex: (constructing all possible orders of array elements)

 - Recursively calculating nth Fibonacci number (2n)
  Logarithmic
 T(n) = lg n [+ possible lower order terms]
 ex: (algorithms that continually divides a problem in half)
 - binary search (find the index of an item in a presorted

array)

8/3/07 CMSC 341 Asymptotic Anaylsis 7

Int fibo(int n)
{

If (n==0 || n==1)
 return 1;
Else
 return fibo(n-1) + fibo (n-2);

}

Add the result of two recursive method calls: 1 op
Each recursive call will add the value of two further recursive
calls (4 in all), 2 ops;
Each of those call will add the value of two further recursive
calls (8 in all): 4 ops;
And so on, until we reach fibo(1) and fibo (0)
It will take n-1 steps to reach the basis case.
T(n) = 1+2+4 +… + 2^(n-2) = o(2^n)

CMSC 341 Asymptotic Anaylsis 8

Growth Functions (cont.)

  Exponential
 T(n) = cn [+ possible lower order terms]
 ex: (constructing all possible orders of array elements)

 - Recursively calculating nth Fibonacci number (2n)
  Logarithmic
 T(n) = lg n [+ possible lower order terms]
 ex: (algorithms that continually divides a problem in half)
 - binary search (find the index of an item in a presorted

array)

8/3/07 CMSC 341 Asymptotic Anaylsis 9

int binarySearch (int [] a, int x)
{

int low=0, high=a.length-1;

while (low<=high)
{
 int mid = (low+high)/2;
 if(a[mid] < x)
 low = mid+1;
 else if (a[mid > x)
 high = mid -1;
 else
 return mid; // found
}

}

CMSC 341 Asymptotic Anaylsis 10

A Graph of Growth Functions

CMSC 341 Asymptotic Anaylsis 11

Expanded Scale

CMSC 341 Asymptotic Anaylsis 12

Asymptotic Analysis

  How does the time (or space) requirement grow as the
problem size grows really, really large?
  We are interested in “order of magnitude” growth rate.
  We are usually not concerned with constant

multipliers. For instance, if the running time of an
algorithm is proportional to (let’s suppose) the square
of the number of input items, i.e. T(n) is c*n2, we won’t
(usually) be concerned with the specific value of c.

  Lower order terms don’t matter.

CMSC 341 Asymptotic Anaylsis 13

Analysis Cases
  What particular input (of given size) gives worst/best/average

complexity?

Best Case: If there is a permutation of the input data that minimizes the
“run time efficiency”, then that minimum is the best case run time
efficiency

Worst Case: If there is a permutation of the input data that maximizes
the “run time efficiency”, then that maximum is the best case run
time efficiency

Average case is the “run time efficiency” over all possible inputs.

  Mileage example: how much gas does it take to go 20 miles?
  Worst case: all uphill
  Best case: all downhill, just coast
  Average case: “average terrain

CMSC 341 Asymptotic Anaylsis 14

Cases Example

  Consider sequential search on an unsorted
array of length n, what is time complexity?

  Best case:

  Worst case:

  Average case:

8/3/07 CMSC 341 Asymptotic Anaylsis 15

int sequentialSearch (int a[], int x, int n)
{
 for(i=0; i< n; i++)
 {
 if(a[i]==x)
 return i;
 }
 return -1; // not found
}

Best case: 1
Worst case: n
Average case: the key is equally likely to be in any position
in the array: (1+2+… +n) /n = T((n+1)/2) = O(n)

CMSC 341 Asymptotic Anaylsis 16

Definition of Big-Oh

  T(n) = O(f(n)) (read “T(n) is in Big-Oh of f(n)”)
 if and only if T(n) ≤ cf(n) for some constants c, n0 and n ≥ n0

This means that eventually (when n ≥ n0), T(n) is always less
than or equal to c times f(n).

The growth rate of T(n) is less than or equal to that of f(n)
Loosely speaking, f(n) is an “upper bound” for T (n)

NOTE: if T(n) =O(f(n)), there are infinitely many pairs of c’s and
n0

’s that satisfy the relationship. We only need to find one
such pair for the relationship to hold.

CMSC 341 Asymptotic Anaylsis 17

Big-Oh Example
  Suppose we have an algorithm that reads N integers from

a file and does something with each integer.
  The algorithm takes some constant amount of time for

initialization (say 500 time units) and some constant
amount of time to process each data element (say 10 time
units).

  For this algorithm, we can say T(N) = 500 + 10N.
  The following graph shows T(N) plotted against N, the

problem size and 20N.
  Note that the function N will never be larger than the

function T(N), no matter how large N gets. But there are
constants c0 and n0 such that T(N) <= c0N when N >= n0,
namely c0 = 20 and n0 = 50.

  Therefore, we can say that T(N) is in O(N).

CMSC 341 Asymptotic Anaylsis 18

Simplifying Assumptions

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
 then f1(n) + f2(n) = O(max (g1(n), g2(n)))

4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
 then f1(n) * f2(n) = O(g1(n) * g2(n))

8/3/07 CMSC 341 Asymptotic Anaylsis 19

for (i=0; i<n; i++)
{
 for(j=0; j<n; j++)
 a+=1;
}

O(n^2)

CMSC 341 Asymptotic Anaylsis 20

Example

  Code:
 sum = 0;

 for (i = 1; i <= n; i++)

 sum += n;

  Complexity: O(n): T(n) = n

CMSC 341 Asymptotic Anaylsis 21

Example

  Code:
 sum1 = 0;

 for (i = 1; i <= n; i++)

 for (j = 1; j <= n; j++)

 sum1++;

  Complexity:
 T(n) =n^2
 O(n^2)

CMSC 341 Asymptotic Anaylsis 22

Example

  Code:
 sum1 = 0;

 for (i = 1; i <= m; i++)

 for (j = 1; j <= n; j++)

 sum1++;

  Complexity: T = m*n, O(m*n) or O(m^2 or
n^2)

CMSC 341 Asymptotic Anaylsis 23

Example

  Code:
 sum2 = 0;

 for (i = 1 ; i <= n; i++)

 for (j = 1; j <= i; j++)

 sum2++;

  Complexity:
  T (n) = 1 + 2 + 3 + 4 + … + n = n(n+1) / 2
  O(n^2)

CMSC 341 Asymptotic Anaylsis 24

Example

  Code:
 sum = 0;

 for (j = 1; j <= n; j++)

 for (i = 1; i <= j; i++)

 sum++;

 for (k = 0; k < n; k++)

 a[k] = k;

  Complexity:

CMSC 341 Asymptotic Anaylsis 25

Example

  Code:
 sum1 = 0;

 for (k = 1; k <= n; k *= 2)

 for (j = 1; j <= n; j++)

 sum1++;

  Complexity:

CMSC 341 Asymptotic Anaylsis 26

Example

  Using Horner’s rule to convert a string to an integer

static int convertString(String key)

{

 int intValue = 0;

 // Horner’s rule

 for (int i = 0; i < key.length(); i++)
 intValue = 37 * intValue + key.charAt(i);

return intValue

}

CMSC 341 Asymptotic Anaylsis 27

Example

  Square each element of an N x N matrix

  Printing the first and last row of an N x N matrix

  Finding the smallest element in a sorted array of N
integers

  Printing all permutations of N distinct elements

CMSC 341 Asymptotic Anaylsis 28

Space Complexity

  Does it matter?

  What determines space complexity?

  How can you reduce it?

  What tradeoffs are involved?

CMSC 341 Asymptotic Anaylsis 29

Constants in Bounds
(“constants don’t matter”)
  Theorem:
 If T(x) = O(cf(x)), then T(x) = O(f(x))
  Proof:

  T(x) = O(cf(x)) implies that there are constants c0
and n0 such that T(x) ≤ c0(cf(x)) when x ≥ n0

  Therefore, T(x) ≤ c1(f(x)) when x ≥ n0 where c1 =
c0c

  Therefore, T(x) = O(f(x))

CMSC 341 Asymptotic Anaylsis 30

Sum in Bounds (the “sum rule”)
  Theorem:
 Let T1(n) = O(f(n)) and T2(n) = O(g(n)).
 Then T1(n) + T2(n) = O(max (f(n), g(n))).

  Proof:
  From the definition of O,

T1(n) ≤ c1f (n) for n ≥ n1 and T2(n) ≤ c2g(n) for n ≥ n2

  Let n0 = max(n1, n2).
  Then, for n ≥ n0, T1(n) + T2(n) ≤ c1f (n) + c2g(n)
  Let c3 = max(c1, c2).
  Then, T1(n) + T2(n) ≤ c3 f (n) + c3 g (n) ≤ 2c3 max(f (n), g (n)) ≤

c max(f (n), g (n)) = O (max (f(n), g(n)))

CMSC 341 Asymptotic Anaylsis 31

Products in Bounds (“the product rule”)

  Theorem:
 Let T1(n) = O(f(n)) and T2(n) = O(g(n)).
 Then T1(n) * T2(n) = O(f(n) * g(n)).
  Proof:

  Since T1(n) = O(f(n)), then T1 (n) ≤ c1f(n) when n ≥ n1

  Since T2(n) = O(g(n)), then T2 (n) ≤ c2g(n) when n ≥ n2

  Hence T1(n) * T2(n) ≤ c1 * c2 * f(n) * g(n) when n ≥ n0

 where n0 = max (n1, n2)
  And T1(n) * T2(n) ≤ c * f (n) * g(n) when n ≥ n0

 where n0 = max (n1, n2) and c = c1*c2

  Therefore, by definition, T1(n)*T2(n) = O(f(n)*g(n)).

CMSC 341 Asymptotic Anaylsis 32

Polynomials in Bounds

  Theorem:
 If T (n) is a polynomial of degree k, then T(n) = O(nk).

  Proof:
  T (n) = nk + nk-1 + … + c is a polynomial of degree k.
  By the sum rule, the largest term dominates.
  Therefore, T(n) = O(nk).

CMSC 341 Asymptotic Anaylsis 33

L’Hospital’s Rule

  Finding limit of ratio of functions as variable
approaches ∞	

  Use this rule to prove other function growth
relationships

 f(x) = O(g(x)) if

() ()xg
xf

xg
xf

xx '
)(')(limlim

∞→∞→

=

()
0)(lim =

∞→ xg
xf

x

CMSC 341 Asymptotic Anaylsis 34

Polynomials of Logarithms in Bounds
  Theorem:
 lgkn = O(n) for any positive constant k

(i.e. logarithmic functions grow slower than linear functions)

  Proof:
  Note that lgk n means (lg n)k.
  Need to show lgk n ≤ cn for n ≥ n0. Equivalently, can show lg n ≤

cn1/k

  Letting a = 1/k, we will show that lg n = O(na) for any positive
constant a. Use L’Hospital’s rule:

0
lim

lg
limlglim 2

1 =
∞→

=
∞→

=
∞→ − aaa n

c
nacn

n
e

ncn
n

n

Ex: lg1000000(n) = O(n)

CMSC 341 Asymptotic Anaylsis 35

 Polynomials vs Exponentials in Bounds
  Theorem: nk = O(an) for a > 1

(e.g. polynomial functions grow slower than exponential functions)

  Proof:
  Use L’Hospital’s rule

 = 0

aa
kn

na
n

n n

k

n

k

ln
limlim 1−

∞→
=

∞→

aa
nkk

n n

k

2

2

ln
)1(lim −−

∞→
=

aa
kk

n kn ln
1)...1(lim −

∞→
=

Ex: n1000000 = O(1.00000001n)

  Theorem: nk = O(an) for a > 1
(e.g. polynomial functions grow slower than exponential functions)

  Proof:
  Use L’Hospital’s rule

 = 0

aa
kk

n kn ln
1)...1(lim −

∞→
=

CMSC 341 Asymptotic Anaylsis 36

Little-Oh and Big-Theta

  In addition to Big-O, there are other definitions used
when discussing the relative growth of functions

Big-Theta – T(n) = Θ(f(n)) if c1*f(n) ≤ T(n) ≤ c2*f(n)
This means that f(n) is both an upper- and lower-bound for T(n)
In particular, if T(n) = Θ(f(n)) , then T(n) = O(f(n))

Little-Oh – T(n) = o(f(n)) if for all constants c there exist
n0 such that T(n) < c*f(n).
 Note that this is more stringent than the definition of Big-O and
therefore if T(n) = o(f(n)) then T(n) = O(f(n))

CMSC 341 Asymptotic Anaylsis 37

Determining Relative Order of Growth
  Given the definitions of Big-Theta and Little-o,
 we can compare the relative growth of any two

functions using limits. See text pages 29 – 31.

 f(x) = o(g(x)) if

 By definition, if f(x) = o(g(x)), then f(x) = O(g(x)).

 f(x) = Θ(g(x)) if
 for some constant c > 0.

 By definition if f(x) = Θ(g(x)), then f(x) = O(g(x))

()
0)(lim =

∞→ xg
xf

x

()
c

xg
xf

x
=

∞→

)(lim

CMSC 341 Asymptotic Anaylsis 38

Determining relative order of Growth

  Often times using limits is unnecessary as simple
algebra will do.

  For example, if f(n) = n log n and g(n) = n1.5 then
deciding which grows faster is the same as determining
which of f(n) = log n and g(n) = n0.5 grows faster (after
dividing both functions by n), which is the same as
determining which of f(n) = log2 n and g(n) = n grows
faster (after squaring both functions). Since we know
from previous theorems that n (linear functions) grows
faster than any power of a log, we know that g(n) grows
faster than f(n).

CMSC 341 Asymptotic Anaylsis 39

Relative Orders of Growth
An Exercise
 n (linear)
 logkn for 0 < k < 1
 constant
 n1+k for k > 0 (polynomial)
 2n (exponential)
 n log n
 logkn for k > 1
 nk for 0 < k < 1
 log n

CMSC 341 Asymptotic Anaylsis 40

Relative Orders of Growth
Answers
 constant
 logkn for 0 < k < 1
 log n
 logkn for k> 1 nk for k < 1
 n (linear)
 n log n
 n1+k for k > 0 (polynomial)
 2n (exponential)

CMSC 341 Asymptotic Anaylsis 41

Big-Oh is not the whole story

  Suppose you have a choice of two approaches to writing a program.
Both approaches have the same asymptotic performance (for
example, both are O(n lg(n)). Why select one over the other, they're
both the same, right? They may not be the same. There is this small
matter of the constant of proportionality.

  Suppose algorithms A and B have the same asymptotic
performance, TA(n) = TB(n) = O(g(n)). Now suppose that A does 10
operations for each data item, but algorithm B only does 3. It is
reasonable to expect B to be faster than A even though both have
the same asymptotic performance. The reason is that asymptotic
analysis ignores constants of proportionality.

  The following slides show a specific example.

CMSC 341 Asymptotic Anaylsis 42

Algorithm A

  Let's say that algorithm A is
{

 initialization // takes 50 units

 read in n elements into array A; // 3 units/element

 for (i = 0; i < n; i++)

 {

 do operation1 on A[i]; // takes 10 units

 do operation2 on A[i]; // takes 5 units

 do operation3 on A[i]; // takes 15 units

 }

 }

 TA(n) = 50 + 3n + (10 + 5 + 15)n = 50 + 33n

CMSC 341 Asymptotic Anaylsis 43

Algorithm B

  Let's now say that algorithm B is
{

 initialization // takes 200 units

 read in n elements into array A; // 3 units/element for
(i = 0; i < n; i++)

 {

 do operation1 on A[i]; // takes 10 units

 do operation2 on A[i]; //takes 5 units

 }

}

 TB(n) =200 + 3n + (10 + 5)n = 200 + 18n

CMSC 341 Asymptotic Anaylsis 44

TA(n) vs. TB(n)

CMSC 341 Asymptotic Anaylsis 45

A concrete example

N T(n) = n T(n) = nlgn T(n) = n2 T(n) = n3 Tn = 2n

5 0.005 µs 0.01 µs 0.03 µs 0.13 µs 0.03 µs

10 0.01 µs 0.03 µs 0.1 µs 1 µs 1 µs

20 0.02 µs 0.09 µs 0.4 µs 8 µs 1 ms

50 0.05 µs 0.28 µs 2.5 µs 125 µs 13 days

100 0.1 µs 0.66 µs 10 µs 1 ms 4 x 1013
years

The following table shows how long it would take to perform T(n) steps on a computer
that does 1 billion steps/second. Note that a microsecond is a millionth of a second and
a millisecond is a thousandth of a second.

Notice that when n >= 50, the computation time for T(n) = 2n has started to become too
large to be practical. This is most certainly true when n >= 100. Even if we were to
increase the speed of the machine a million-fold, 2n for n = 100 would be 40,000,000
years, a bit longer than you might want to wait for an answer.

CMSC 341 Asymptotic Anaylsis 46

Amortized Analysis

  Sometimes the worst-case running time of an operation
does not accurately capture the worst-case running time
of a sequence of operations.

  What is the worst-case running time of ArrayList’s add()
method that places a new element at the end of the
ArrayList?

  The idea of amortized analysis is to determine the
average running time of the worst case.

CMSC 341 Asymptotic Anaylsis 47

Amortized Example – add()
  In the worst case, there is no room in the ArrayList for the new element,

X. The ArrayList then doubles its current size, copies the existing
elements into the new ArrayList, then places X in the next available slot.
This operation is O(N) where N is the current number of elements in
the ArrayList.

  But this doubling happens very infrequently. (how often?)
  If there is room in the ArrayList for X, then it is just placed in the next

available slot in the ArrayList and no doubling is required. This
operation is O(1) – constant time

  To discuss the running time of add() it makes more sense to look at a
long sequence of add() operations rather than individual operations
since not all individual operations

  A sequence of N add() operations can always be done in O(N), so we
say the amortized running time of per add()operation is O(N) / N =
O(1) or constant time.

  We are willing to perform a very slow operation (doubling the vector
size) very infrequently in exchange for frequently having very fast
operations.

CMSC 341 Asymptotic Anaylsis 48

Amortized Analysis Example

  What is the average number of bits that are changed when a binary number
is incremented by 1?

  For example, suppose we increment 01100100.
  We will change just 1 bit to get 01100101.
  Incrementing again produces 01100110, but this time 2 bits were changed.
  Some increments will be “expensive”, others “cheap”.
  How can we get an average? We do this by looking at a sequence of

increments.
  When we compute the total number of bits that change with n increments,

divide that total by n, the result will be the average number of bits that
change with an increment.

  The table on the next slide shows the bits that change as we increment a
binary number.(changed bits are shown in red).

CMSC 341 Asymptotic Anaylsis 49

Analysis 24 23 22 21 20 Total bits changed

0 0 0 0 0 Start =0
0 0 0 0 1 1
0 0 0 1 0 3
0 0 0 1 1 4
0 0 1 0 0 7
0 0 1 0 1 8
0 0 1 1 0 10
0 0 1 1 1 11
0 1 0 0 0 15

We see that bit position 20 changes every time we increment. Position 21 every
other time (1/2 of the increments), and bit position 2J changes each 1/2J
increments. We can total up the number of bits that change:

CMSC 341 Asymptotic Anaylsis 50

Analysis, continued

  The total number of bits that are changed by incrementing
n times is: ⎣ ⎦

⎣ ⎦j
n

j
n 2/

)lg(

0
∑
=

When we perform n increments, the total number of bit changes is <= 2n.

The average number of bits that will be flipped is 2n/n = 2. So the amortized
cost of each increment is constant, or O(1).

⎣ ⎦
⎣ ⎦

∑∑
∞

==

=<
0

)lg(

0
2)2/1(*2/

j

j
n

j

j nnn

We can simplify the summation:

