
Reviewed Papers

inroads – The SIGCSE Bulletin 97 Volume 36, Number 2, 2004 June

How Not to Go About a Programming Assignment

Agustín Cernuda del Río
Department of Informatica

University of Oviedo
33007 Oviedo – Asturias, Spain

guti@lsi.uniovi.es

Abstract
Computer programming students invariably fall into more than one bad habit. It can be extremely difficult to eradicate
them (and many lecturers and professional programmers keep succumbing to them time and again). I wrote this when,
in the days leading up to an assignment deadline, I saw these things happening so often that I couldn’t help but recall
my classmates and I a decade earlier… doing exactly the same things as my students. This article is an attempt to show
these irrational attitudes in an ironical way, intending to make our students aware of bad habits without admonishing
them.

 Keywords: Programming assignments, best practices, humor

1. Programming, in a Strict Sense of the Word

1.1 Ignore Messages
Compilers, operating systems, etc. generate error messages
designed only to be read by their creators (maybe to justify
their salaries). Precious time is wasted reading these
messages; time that could be better spent … writing code,
of course! Error messages make us less productive. Don’t
fall into the trap. Ignore them.

As for warning messages, ignoring them makes you
feel like a professional programmer who’s not scared of
computers. What better way of showing one’s experience
as a programmer than delivering a program that generates
dozens, no, hundreds of warning messages when it
compiles without its author feeling the slightest bit
concerned? Everyone can see that you’re an experienced,
laid-back programmer who is too busy to waste time on
drivel.

1.2 Don’t Stop To Think
Let’s not kid ourselves here. What are we building? A
program. What is the only thing that really matters in a
program? Code. What really works? Code. Why use
outdated resources like pencils, pens or paper? You are a
paid-up member of the SMS generation; you don’t make a
fool of yourself writing time-consuming syllables, right?
Then, stop messing around thinking about nothing when
there’s so much code to write.

You should never stop coding. We all know that error
messages are an unacceptable interruption, a pointless
obstacle as we go about our work. So what do you do if
you get a compiler error message? As you should know by
now, reading and understanding it is just not an option.

You can try making some random change to the source
code. You never know, you might pull the wool over the
compiler’s eyes. But if this doesn’t work, don’t waste any
more time. NO, don’t be tempted by trying to read the
message or understanding it. Just keep churning out code -
that’s the only way of finishing off this horrendous
assignment. You’ll get to sort the error out later on. And as
we all know, errors tend to disappear by themselves if
they’re ignored. At the end of the day you’ll compile,
you’ll run, and even if you had tested (not that you needed
to) you’d have seen that everything was OK.

 If the code compiles but does something wrong, it
doesn’t really matter; sort it out later, when it’s finished.
Anyway, you might get lucky and find out that the lecturers
have changed the assignment outline and that it fits in with
your program after all. So don’t take the risk of fixing
programs that seem to be off track – you might be wasting
your time.

1.3 I Don’t Want Any Trouble
If your program contains a bug that crops up every now and
again, it will be difficult to find and it won’t probably show
up during the exam demo. Maybe it will disappear by itself.
Don’t worry. But if the bug comes up again and again,
change things at random until it disappears. We’ve already
said that pausing for thought is not an option. If you decide
to get rid of the bug - simply because the urge takes you -
just write the same code in different ways. Maybe the
problem will disappear; something you’ll have achieved
without 1) understanding what caused it, and 2) having to
stop writing code. Clearly, this is the most professional
approach.

Reviewed Papers

inroads – The SIGCSE Bulletin 98 Volume 36, Number 2, 2004 June

Don’t compile on a regular basis, don’t tiptoe your
way forward. You’re a professional and professionals take
giant steps. Write thousands of lines of code first and leave
the compiling for later; it will be far more entertaining and
worthwhile to look for compiling errors.

The same rule applies for runtime errors. If you try to
keep your program correct as it grows, it will be too easy to
pinpoint a new bug. Only cowards do that. A real
programmer writes the entire program and then digests it
whole like a boa constrictor. Looking for a bug hidden in
the last 10,000 lines is exciting but if there are only 10 or
20 lines, well, what fun is there in that?

And… why use debuggers? It’s up to the lecturer to
look for your bugs. Programming errors are the exception,
not the norm, and when you become a pro you won’t have
to face them. Why waste time then or expend your energy
learning to deal with them as part of your education?

2. If Only I Could Find the Words

2.1 Reading
Outlines and specifications are a real drag. These tedious
and long-winded tracts refer to irrelevant problems and are
nothing more than an opportunity for lecturers to display
their narcissistic traits. You only need to take a quick look
at them and get the gist of what they are after. Reading
them for a second time only gets in the way of our real
mission, which is nothing other than… writing code. So
once you’ve got a rough idea of what’s expected from you
just stick the assignment outline at the bottom of the
biggest heap of paper on your table.

On the other hand, coding and presentation rules show
how arrogant our lecturers are. They like controlling us,
forcing us to do pointless exercises - that‘s why they write
rules in the first place. Don‘t play their game. Reading or
applying rules won’t make our work any better or worse.
And as for making our exercises easier to handle, well, they
get paid to correct them, don’t they? Don‘t even bother to
put your name or your class on them. Lecturers will have
little trouble remembering your face and your unmistakable
programming style so they’ll know it’s yours anyway.

2.2 Writing
Don’t write comments. We’ve said it before and we’ll say
it again: what’s the point of all this? To create a program,
i.e. code. Non-executable stuff is unnecessary and
explanations are an insult to a programmer’s intelligence -
after all, he or she can read the source, right?

If there are mandatory comments to write (function
descriptions and stuff like that) then write them, even if you
have nothing interesting to say. Lecturers like this drivel
and you’ll get higher marks.

As for the docs, write them at the end. How can you
write a document describing a program that doesn’t exist
yet? What’s the point in writing documents for yourself
about what you’ve just done? The only reason for writing

documentation for a program is that the lecturers ask for it.
It’s something you can sort out the day before the deadline.
What’s more, there’s no chance of you forgetting anything
as it will all be fresh in your mind.

Also, use abbvns ‘n strange konsonants when u
write. Lecturers are old fogeys. You are a member of the
SMS generation. Try to write messages that are difficult to
read. Although he might not notice it, the lecturer will have
to make an extra effort, after a long day stuck in front of a
computer screen. All of which should help raise the old
concentration levels and put him or her in a really good
mood.

What about spelling? Spelling is a drag. Even Juan
Ramón Jiménez1 put his letter j’s wherever he wanted and
Gabriel García Márquez once called for spelling to done
away with for good. Obviously, you’re just as good as them
and so you’ve just as much right to write however you
want.

Let’s face it, who doesn’t make spelling mistakes? It’s
all too easy. And there’s a brutal poetry in abrupt
contractions and semantic hijackings that fling treacherous
letters at the reader. Ever wanted to give your lecturer a
slap in the face but never had the guts to do it? Drop him a
line such as:

I’m trying to do you’re exercise. I think its two
difficult.
It’ll have the same effect, don’t worry.

3. Your Relationship With Your Lecturer

3.1 Don’t Ask For Help
If there’s something you can’t do, if you have a query or if
you’re lost, don’t look for help, don’t ask questions during
the lecture and don’t go to your tutorials. There are
thousands of reasons why you shouldn’t but here’s just a
few of them:

 Going to a tutorial and asking questions is
tantamount to admitting you’re stupid.

 Better to be ignorant than to run the risk of
revealing that you don’t know something you
should.

 Ask a question during the lecture and your fellow
students will think you’re stupid. You don’t think
that of them when they ask a question, but they
will about you. This argument holds true for each
and every student in a lecture room at any given
moment; that’s why none of them ask any
questions. Conclusion: never ask for help or go to
a tutorial.

There is, however, an exception to this rule; you are
allowed to turn to the lecturer in the last few days before a

1 A Spanish poet who won the Nobel Prize for Literature in 1956.
He liked to flaunt spelling rules by writing almost phonetically (in
Spanish the change involves only a handful of letters, g/j among
them).

Reviewed Papers

inroads – The SIGCSE Bulletin 99 Volume 36, Number 2, 2004 June

deadline. There may well be a long queue, he will dedicate
his time to helping students while neglecting other duties
but don’t worry, he won’t be able to resist helping you in
those dark, gloomy hours of need.

3.2 Challenge Your Lecturer
If, despite everything we've said, you decide to ask for
help, always remember a golden rule that’ll also help you
in your professional career - after all a whole host of pros
and computer users follow it too. NEVER give a detailed
description of a problem.

Here’s an example. If something untoward happens
while you’re building a program, go and see the lecturer
and tell him: “Something strange happened with my
program yesterday.” He’ll look at you expecting more
details but don’t give in, don’t say anything else. Don’t
even think of going into details such as:
1 Whether the strange event happened while compiling the

program or while running it.
2 Whether the strange event caused the program to end

suddenly or to keep running indefinitely, or simply, the
program didn’t do what you expected.

Here’s another one. If the strange event happened

while you were compiling, don’t tell the lecturer what the
error message said or the line of code where it appeared.
Just say something like: “It gave some error message, or
something.”

Here’s yet another example. If the strange event
happened during runtime and caused the program to
terminate suddenly, never write down the error message or
tell the lecturer what it said. Just say: “It gave some error
message, or something.”

Of course, if the strange event involved the program
not doing what you expected it to do, don’t even think of
telling the lecturer the exact circumstances of how it
happened. Avoid descriptions like: “This error comes up
whenever I load a second file and the first one was empty.”
Just say the magic words: “It gave some error message, or
something.” Have you got that?

Let’s suppose that you’re a stubborn ingrate who goes
see the lecturer to ask about a specific problem. That’s two
mistakes rolled into one but you can at least get something
right - take the wrong source code with you. If you have a
bug and the things you try out only make the situation
worse, take the most recent code to your tutorial but ask
about the original problem. That way the lecturer will
embark on a fruitless search for an error when, in actual
fact, another one will show up. When it does, just say
something like: “Oh yeah, I tried something out. Delete that
line there ...” Perfect this art and you’ll be able to do a
whole coding session in the tutorial. I know - I’ve seen it
done.

If you insist on being irresponsible and asking for help
in tutorials, don’t even think of pinpointing the problem
before you go. If there is an error in a 1-MB input file,

don’t try smaller files until you identify the cause of the
error. Don’t try to create a mini-program with that selfsame
error. If you do, the lecturer will probably find the problem
straightaway. What kind of challenge is that for him?
Better to make him read thousands of lines of code and
make traces with hundreds of steps. That’ll give him a
chance to practice his clairvoyance skills and you’ll be able
to check out his powers of deduction.

3.3 Be Clever When Using Electronic Mail
Some questions are almost impossible to answer by e-mail,
if you put them in the right way. Nurture this skill and
make your questions completely vague. Here’s an example:
“It gave some error message, or something. I’ve attached
the source code”. You can go the other way as well, if you
want, by asking a more specific question but forgetting to
send the code. “The constructor in my TDevice class gave
some error message, or something.” It goes without saying
that you should write your message straightaway and send
it. Never reread messages.

There’s another reason why email is so much fun. You
can sound off without the guy knowing which group you’re
from or your name. Everything will be OK if you take the
informal approach – it makes it all so much cozier, making
your name an irrelevant detail.

4. And, Of Course...

4.1 Leave It All for the Last Minute
Right from day one your lecturers will tell you to hand your
work in the following week. They’ll tell you to work at a
steady, constant pace from the off. Don’t listen to them.

Although it might be a relatively new discipline,
computer programming has already built up a number of
sacred traditions, one of which is the last-minute rush to get
your work in on time. Subjecting yourself to this stress is
an essential part of preparing yourself for the world of
work. Relax. Let your work pile up gradually and blithely
ignore all the warnings and telltale signs that you’re behind
schedule. Don’t let studying get in the way of your life.
Don’t duck out of that skiing trip in a vain attempt to make
up for lost time. And just when you’re on the edge of the
precipice, just when you’ve only got two weeks to hand in
a program that you’ve had four months to do, then the code
will start to flow like there’s no tomorrow.
 What attraction would computer programming have if
we didn’t put together programs in a breathless, last-minute
dash? What would become of the image of the long-haired,
bearded, smelly (there’s no time to shave, trim your beard
or have a shower, you see), Megadeth-T-shirt-wearing
programmer (remember that stains show up less on dark
Heavy Metal T-shirts with their elaborate designs) tapping
away at a keyboard for 48 hours non-stop? Would you have
the stamina to go to the local LAN Party, park your bum
down on a plastic chair and spend three days cooped up in
a marquee in 35-degree heat gunning down monsters on a

Reviewed Papers

inroads – The SIGCSE Bulletin 100 Volume 36, Number 2, 2004 June

screen? What right would we have to call ourselves heroes
if we had a kip every day just because we felt a bit tired?
Just think about it. What would happen to Coca Cola and
all its factories? What would happen to Juan Valdés?
(Valdés is the name of the coffee grower in Café de
Colombia’s TV adverts.) And what would happen to all
the coffee factories that dedicate half of their production to
computer programmers? When Sandra Bullock and Robert
Redford became hackers, did they put their notes down by
the side of the computer, sit and think for a while and then
methodically tap away on the keyboard for an hour or two
before heading off to the gym or the bar on the corner, day
after day for four months? And what about that bloke in
Operation Swordfish? Would he have cracked the Pentagon
password if one of Travolta’s hitmen hadn’t been pointing
a pistol at his head while another Travolta hit woman was

trying to distract him? The answer, my friend, is no. You
want an easy life? Go and take another course.

Being up to date with your work and understanding
what’s going on in the lecture room is for swots and
wimps. You know what to do - leave it all for the last
minute.

4.2 Cheat With You’re Assignment
Copy the programs. Lecturers will probably have to mark
dozens of them, making it difficult to spot similarities
between them. And even if they do, it sure as hell ain’t easy
to prove. Appeal against your mark and take it to the High
Court if necessary. That will take much more money and
effort than writing the programs, but the goal is to prove
that you're smarter than the lecturer and never, ever give
way.

ACM-W

ACM’s Committee on Women in Computing

NEWS / PUBLICATIONS
PROJECTS

AMBASSADORS
INTERNSHIPS

RELATED SITES
RESEARCH

<http://www.acm.org/women/>

