Red-Black Trees

Red-Black Trees

- Definition: A red-black tree is a binary search tree where:
- Every node is either red or black.
- Each NULL pointer is considered to be a black "node"
- If a node is red, then both of its children are black.
- Every path from a node to a NULL contains the same number of black nodes.
- The root is black
- Definition: The black-height of a node, X, in a red-black tree is the number of black nodes on any path to a NULL, not counting X.

A Red-Black Tree with NULLs shown
Black-Height of the tree $=4$

A valid Red-Black Tree
Black-Height $=2$

Theorem 1 - Any red-black tree with root \boldsymbol{x}, has $\mathbf{n}>=\mathbf{2}^{\mathbf{b h}(\mathbf{x})}-\mathbf{1}$ nodes, where $\mathrm{bh}(\mathrm{x})$ is the black height of node x.
Proof: by induction on height of x.

Theorem 2 - In a red-black tree, at least half the nodes on any path from the root to a NULL must be black.

Proof - If there is a red node on the path, there must be a corresponding black node.

Algebraically this theorem means

$$
b h(x) \geq h / 2
$$

Theorem 3 - In a red-black tree, no path from any node, N , to a NULL is more than twice as long as any other path from N to any other NULL.

Proof: By definition, every path from a node to any NULL contains the same number of black nodes. By Theorem 2, a least _ the nodes on any such path are black. Therefore, there can no more than twice as many nodes on any path from N to a NULL as on any other path. Therefore the length of every path is no more than twice as long as any other path

Theorem 4 -
A red-black tree with \boldsymbol{n} nodes has height

$$
h \leq 2 \lg (n+1)
$$

Proof: Let h be the height of the red-black tree with root x. By Theorem 2,

$$
\operatorname{bh}(x) \geq h / 2
$$

From Theorem 1, $\boldsymbol{n} \geq 2^{\operatorname{bh}(\mathrm{x})}-1$
Therefore $n \geq 2^{\mathrm{h} / 2}-1$

$$
\begin{aligned}
& \mathrm{n}+1 \geq 2^{\mathrm{h} / 2} \\
& \lg (\mathrm{n}+1) \geq \mathrm{h} / 2 \\
& 2 \lg (\mathrm{n}+1) \geq \mathrm{h}
\end{aligned}
$$

Bottom -Up Insertion

- Insert node as usual in BST
- Color the Node RED
- What Red-Black property may be violated?
- Every node is Red or Black
- NULLs are Black
- If node is Red, both children must be Black
- Every path from node to descendant NULL must contain the same number of Blacks

Bottom Up Insertion

- Insert node; Color it RED; X is pointer to it
- Cases

0: X is the root -- color it black
1: Both parent and uncle are red -- color parent and uncle black, color grandparent red, point X to grandparent, check new situation
2 (zig-zag): Parent is red, but uncle is black. X and its parent are opposite type children -- color grandparent red, color X black, rotate left(right) on parent, rotate right(left) on grandparent
3 (zig-zig): Parent is red, but uncle is black. X and its parent are both left (right) children -- color parent black, color grandparent red, rotate right(left) on grandparent

Case $1-\mathrm{U}$ is Red
Just Recolor and move up

Case 2 - Zig-Zag
Double Rotate
X around $\mathrm{P} ; \mathrm{X}$ around G
Recolor G and X

Single Rotate P around G
Recolor P and G

Insert 4 into this R-B Tree

Black node

Insertion Practice

Insert the values $2,1,4,5,9,3,6,7$ into an initially empty Red-Black Tree

Asymptotic Cost of Insertion

- $O(\lg n)$ to descend to insertion point
- $O(1)$ to do insertion
- $\mathrm{O}(\lg \mathrm{n})$ to ascend and readjust $==$ worst case only for case 1
- Total: $\mathrm{O}(\log \mathrm{n})$

