
CMSC 341

Asymptotic Analysis

2

Complexity

How many resources will it take to solve a problem of a given
size?

– time

– space

Expressed as a function of problem size (beyond some
minimum size)

– how do requirements grow as size grows?

Problem size

– number of elements to be handled

– size of thing to be operated on

3

Mileage Example

Problem:

John drives his car, how much gas does he use?

4

The Goal of Asymptotic Analysis

How to analyze the running time (aka computational
complexity) of an algorithm in a theoretical model.

Using a theoretical model allows us to ignore the effects of

– Which computer are we using?

– How good is our compiler at optimization

We define the running time of an algorithm with input size n
as T (n) and examine the rate of growth of T(n) as n
grows larger and larger and larger.

5

Growth Functions

Constant

T(n) = c

ex: getting array element at known location

trying on a shirt

calling a friend for fashion advice

Linear

T(n) = cn [+ possible lower order terms]

ex: finding particular element in array (sequential search)

trying on all your shirts

calling all your n friends for fashion advice

6

Growth Functions (cont)

Quadratic

T(n) = cn2 [+ possible lower order terms]

ex: sorting all the elements in an array (using bubble sort)
trying all your shirts (n) with all your ties (n)

having conference calls with each pair of n friends

Polynomial

T(n) = cnk [+ possible lower order terms]

ex: looking for maximum substrings in array

trying on all combinations of k separates types of
 apparels (n of each)

having conferences calls with each k-tuple of n friends

7

Growth Functions (cont)

Exponential

T(n) = cn [+ possible lower order terms]

ex: constructing all possible orders of array elements

Logarithmic

T(n) = logn [+ possible lower order terms]

ex: finding a particular array element (binary search)

trying on all Garanimal combinations

getting fashion advice from n friends using phone tree

8

A graph of Growth Functions

9

Expanded Scale

10

Asymptotic Analysis

What happens as problem size grows really, really large? (in
the limit)

– constants don’t matter

– lower order terms don’t matter

11

Analysis Cases

What particular input (of given size) gives worst/best/average
complexity?

Best Case: if there’s a permutation of input data that
minimizes “run time efficiency”, then that minimum is the
best case run time efficiency. Worst Case is defined by
replacing “minimizes” by “maximizes”.

Mileage example: how much gas does it take to go 20 miles?

– Worst case: all uphill

– Best case: all downhill, just coast

– Average case: “average terrain”

12

Cases Example

Consider sequential search on an unsorted array of length n,
what is time complexity?

Best case:

Worst case:

Average case:

13

Definition of Big-Oh

T(n) = O(f(n)) (read “T(n) is Big-Oh of f(n)”)

if and only if
T(n) ≤ cf(n) for some constants c, n0 and n ≥ n0

This means that eventually (when n ≥ n0), T(n) is always
less than or equal to c times f(n).

Loosely speaking, f(n) is an “upper bound” for T (n)

14

Big-Oh Example

Suppose we have an algorithm that reads N integers from a
file and does something with each integer.

The algorithm takes some constant amount of time for
initialization (say 500 time units) and some constant
amount of time to process each data element (say 10 time
units).

For this algorithm, we can say T(N) = 500 + 10N.
The following graph shows T(N) plotted against N, the

problem size and 20N.
Note that the function N will never be larger than the function

T(N), no matter how large N gets. But there are constants
c0 and n0 such that T(N) <= c0N when N >= n0,
namely c0 = 20 and n0 = 50.

Therefore, we can say that T(N) is in O(N).

15

T(N) vs. N vs. 20N

16

Simplifying Rules

1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),

then f1(n) + f2(n) = O(max (g1(n), g2(n)))

4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),

then f1(n) * f2(n) = O(g1(n) * g2(n))

We will prove a number of these rules by applying the
definition of Big O

17

Constants in Bounds

Theorem:

O(cf(x)) = O(f(x)) (Simplifying Rule #2)

Proof:

– T(x) = O(cf(x)) implies that there are constants c0 and
n0 such that T(x) ≤ c0(cf(x)) when x ≥ n0

– Therefore, T(x) ≤ c1(f(x)) when x ≥ n0 where c1 = c0c

– Therefore, T(x) = O(f(x))

18

Sum in Bounds

Theorem: (Simplifying Rule 3)
Let T1(n) = O(f(n)) and T2(n) = O(g(n)).
Then T1(n) + T2(n) = O(max (f(n), g(n))).

Proof:
– From the definition of O, T1(n) ≤ c1f (n) for n ≥ n1 and

T2(n) ≤ c2g(n) for n ≥ n2

– Let n0 = max(n1, n2).
– Then, for n ≥ n0, T1(n) + T2(n) ≤ c1f (n) + c2g(n)
– Let c3 = max(c1, c2).
– Then, T1(n) + T2(n) ≤ c3 f (n) + c3 g (n)

 ≤ 2c3 max(f (n), g (n))
 ≤ c max(f (n), g (n)) �

 = O (max (f(n), g(n)))

19

Products in Bounds

Theorem: (Simplifying Rule 4)

Let T1(n) = O(f(n)) and T2(n) = O(g(n)).

Then T1(n) * T2(n) = O(f(n) * g(n)).

Proof:
– Since T1(n) = O (f(n)), then T1 (n) ≤ c1f(n) when n ≥ n1

– Since T2(n) = O (g(n)), then T2 (n) ≤ c2g(n) when n ≥ n2

– Hence T1(n) * T2(n) ≤ c1 * c2 * f(n) * g(n) when n ≥ n0

where n0 = max (n1, n2)
– And T1(n) * T2(n) ≤ c * f (n) * g(n) when n ≥ n0

where n0 = max (n1, n2) and c = c1*c2

– Therefore, by definition, T1(n)*T2(n) = O(f(n)*g(n)).

20

Polynomials in Bounds

Theorem:

If T (n) is a polynomial of degree x, then T(n) = O(nx).

Proof:

– T (n) = nx + nx-1 + … + k is a polynomial of degree x.

– By the sum rule, the largest term dominates.

– Therefore, T(n) = O(nx).

21

Example

Code:

a = b;

Complexity:

22

Example

Code:

sum = 0;

for (i = 1; i <= n; i++)

sum += n;

Complexity:

23

Example

Code:
sum1 = 0;

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

sum1++;

Complexity:

24

Example

Code:
sum2 = 0;

for (i = 1 ; i <= n; i++)

for (j = 1; j <= i; j++)

sum2++;

Complexity:

25

Example

Code:

sum = 0;

for (j = 1; j <= n; j++)

for (i = 1; i <= j; i++)

sum++;

for (k = 0; k < n; k++)

A[k] = k;

Complexity:

26

Example

Code:
sum1 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++)

sum1++;

Complexity:

27

Example

Code:
sum2 = 0;

for (k = 1; k <= n; k *= 2)

for (j = 1; j <= k; j++)

sum2++;

Complexity:

28

Example

• Square each element of an N x N matrix

• Printing the first and last row of an N x N matrix

• Finding the smallest element in a sorted array of N
integers

• Printing all permutations of N distinct elements

29

Some Questions

1. Is upper bound the same as worst case?

2. What if there are multiple parameters?

Ex: Rank order of p pixels in c colors
for (i = 0; i < c; i++)

count[i] = 0;

for (i = 0; i < p; i++)

count[value(i)]++;

sort(count)

30

Space Complexity

Does it matter?

What determines space complexity?

How can you reduce it?

What tradeoffs are involved?

31

A General Theorem

Consider the limit of 2 functions, f(x) and g(x) as x grows large:

l can go only to 0,∞, or some constant.

l = 0 if and only if f(x) is O(g(x))

l = ∞ if and only of g(x) is O(f(x))

l = k if and only if f(x)/g(x) is O(1).

Example: f(x) = x2 and g(x) = x3 Then

and x2 is O(x3)

)(/)(lim xgxfl
x
=

∞→

0/ 32lim ==
∞→

xxl
x

32

L’Hôspital’s Rule

Frequently, when we try to use the general theorem, we get
an indeterminate form of ∞/∞. In that case, we can use
L’Hôspital’s rule, which states that

We can use this rule to apply the General Theorem. The next
slide is an example

() ()xg

xf

xg

xf

xx '

)(')(
limlim

∞→∞→

=

33

Polynomials of Logarithms in Bounds

Theorem:

lgxn = O(n) for any positive constant k

Proof:

– Note that lgk n means (lg n)k.
– Need to show lgk n ≤ cn for n ≥ n0. Equivalently, can

show lg n ≤ cn1/k

– Letting a = 1/k, we will show that lg n = O(na) for any
positive constant a. Use L’Hospital’s rule:

0
lim

lg
limlglim

2
1

=
∞→

=
∞→

=
∞→ − aaa n

c
nacn

n
e

ncn

n
n

Ex: lg1000000(n) = O(n)

34

 Polynomials vs Exponentials in Bounds
Theorem:

 nk = O(an) for a > 1

Proof:

– Use L’Hospital’s rule

= ...

= 0

aa

kn
na

n
n n

k

n

k

ln

limlim 1−

∞→
=

∞→

aa

nkk
n n

k

2

2

ln

)1(lim −−
∞→

=

aa

kk
n kn ln

1)...1(lim −
∞→

=

Ex: n1000000 = O(1.00000001n)

35

Relative Orders of Growth

n (linear)

logkn for 0 < k < 1

constant

n1+k for k > 0 (polynomial)

2n (exponential)

n log n

logkn for k > 1

nk for 0 < k < 1

log n

36

Big-Oh is not the whole story
Suppose you have a choice of two approaches to writing a program. Both

approaches have the same asymptotic performance (for example, both
are O(n lg(n)). Why select one over the other, they're both the same,
right? They may not be the same. There is this small matter of the
constant of proportionality.

Suppose algorithms A and B have the same asymptotic performance,
TA(n) = TB(n) = O(g(n)). Now suppose that A does 10 operations for
each data item, but algorithm B only does 3. It is reasonable to expect
B to be faster than A even though both have the same asymptotic
performance. The reason is that asymptotic analysis ignores constants
of proportionality.

The following slides show a specific example.

37

Algorithm A
Let's say that algorithm A is

{
initialization // takes 50 units
read in n elements into array A; // 3 units per element
 for (i = 0; i < n; i++)
{
 do operation1 on A[i]; // takes 10 units

 do operation2 on A[i]; // takes 5 units
 do operation3 on A[i]; // takes 15 units

}
 }

TA(n) = 50 + 3n + (10 + 5 + 15)n = 50 + 33n

38

Algorithm B

Let's now say that algorithm B is

{
initialization // takes 200 units
read in n elements into array A; // 3 units per
element for (i = 0; i < n; i++)
{
do operation1 on A[i]; // takes 10 units
do operation2 on A[i]; /takes 5 units

}
 }

TB(n) =200 + 3n + (10 + 5)n = 200 + 18n

39

TA(n) vs. TB(n)

40

A concrete example

4 x 1013 years1 millisec10 microsec0.66 microsec0.1 microsec100

13 days125 microsec2.5 microsec0.28 microsec0.05 microsec50

1 millisec8 microsec0.4 microsec0.09 microsec0.02 microsec20

1 microsec1 microsec0.1 microsec0.03 microsec0.01 microsec10

0.03 microsec0.13 microsec0.03 microsec0.01 microsec0.005
microsec

5

Tn = 2nT(n) = n3T(n) = n2T(n) = nlgnT(n) = nN

The following table shows how long it would take to perform T(n) steps on a computer that does
1 billion steps/second. Note that a microsecond is a millionth of a second and a millisecond is a
thousandth of a second.

Notice that when n >= 50, the computation time for T(n) = 2n has started to become too
large to be practical. This is most certainly true when n >= 100. Even if we were to
increase the speed of the machine a million-fold, 2n for n = 100 would be 40,000,000
years, a bit longer than you might want to wait for an answer.

41

Relative Orders of Growth

constant

logkn for 0 < k < 1

log n

logkn for k> 1
nk for k < 1

n (linear)

n log n

n1+k for k > 0 (polynomial)

2n (exponential)

