B-Trees

Thomas A. Anastasio

5 April 2000

1 Introduction

B-Trees find their principal use as a data structure suitable for dictionary op-
erations when the data are too large to be stored in main memory. When the
data are in secondary storage, such as disk, the relatively slow disk access time
becomes a major bottleneck for structures such as binary search trees. The B-
Tree reduces the number of disk accesses needed, and therefore can significantly
improve performance.

Before proceeding with our discussion of B-Trees, let’s step back and consider
an alternative approach to implementing binary search trees. The approach we
used in preceding chapters assumed that each node of the tree stored data.
That’s fine, but there is another way to organize the tree - store the data only
at the leaves. In this approach, the internal nodes serve only to guide the search
to the leaves. We will restrict our discussion of such trees to those in which all
leaves are at the same level.

Figure 1 shows an example of this different type of binary search tree. It
stores the integers {1,4,7,9,10,14,16,19}. Note that the data are stored in the
leaves and the leaves are all at the same level. Each internal node stores a key
that guides the search. Data values smaller than the key in an internal node are
to be found in the node’s left subtree. Larger (or equal) values are to be found
in the right subtree. For example, the root node stores the key 10, indicating
that data values less than 10 are in its left subtree, values greater than or equal
to 10 are in its right subtree.

We can make a few observations about this type of binary search tree.

1. Each interior node stores exactly one key and has exactly two subtrees
(although some of the subtrees may be empty).

2. All search paths are of the same length, equal to that of an unsuccessful
search in an “ordinary” binary search tree (in which each node stores a
datum). The path length for n leaf nodes will be [lgn]. In Figure 1, there
are 8 leaf nodes and the height of the tree is [lg8] = 3. A corollary of this
is that the tree can hold up to 2" leaves.

3. It is possible to store multiple data elements in a leaf. For example, in
the tree of Figure 1, the leftmost leaf could store the values {1, 2,3} with

| 10]]

LLa L] [le [e] [] 19]]
TRLL

Figure 1: A BST with Data Stored in the Leaves

no other change to the tree. We will make use of this feature, but will
restrict the number of elements that a leaf can store. If we did not have
such a restriction, we would take the chance of having a degenerate tree
in which there is one leaf that stores all the elements (i.e., a list).

4. In an ordinary binary search tree, every node (interior as well as exterior)
has the same structure — it stores a datum and two subtrees. In Figure 1,
the interior nodes do not have the same structure as the exterior nodes.

1.1 M-way Trees

We can generalize Figure 1 so that each interior node has more than 2 subtrees.
In general, these trees are called M-way trees, where M is the number of subtrees
possible at each interior node. The tree of Figure 1 would be called a 2-way
tree, or an M-way tree of order 2. Sometimes M-way trees are called k-ary trees,
where k has the same meaning as M in an M-way tree. We’ll use the “M-way”
terminology.

As M increases, the height of the tree decreases. The height of an M — way
tree with n leaves is [logy, n]. Figure 2 shows an M-way tree of order 3 that
stores the same data as the tree of Figure 1.

A perfect M-way tree of height h has M" leaves. In this example, M = 3
and h = 2, so the tree can support 9 leaves, although it has only 8 leaves. The
height of the tree is [logs 8] = [1.89] = 2, less than that of the M-way tree of
order 2. Note that each interior node can hold 2 keys and can have up to 3
subtrees. In general, an interior M-way tree node can hold M — 1 keys and have
up to M subtrees.

Figure 2: An M-way Tree of Order 3

One way to look at the reduced path length with increasing M is that the
number of nodes to be visited in searching for a leaf is smaller for large M.
We’ll see that when data are stored on disk, each node visited requires one disk
access. By reducing the number of nodes visited, we reduce the number of disk
accesses.

1.2 M-way Nodes

Just for specificity, let’s define an MwayNode class. These nodes can be used
as interior or exterior nodes. It is certainly possible to design a more space-
efficient family of nodes suitable for Mway trees, but the intent here is to show

a plausible and simple implementation.
template <class KeyType, class DataType>

class MwayNode

{
private:
bool _isLeaf; // true if this is an exterior node
int _m; // the order of this node
int _nkeys; // number of keys actually held by this node
KeyType * _keys; // array of key values (size = _m)
MwayNode * _subtrees; // array of subtrees of this node
int _1; // max number of data elements storable in a leaf
List<DataType> _data; // data storage if this is leaf
public:
Constructors
Destructors
Accessors
Mutators

if an MwayNode instance is an interior node, _data will be an empty list. If

it is an exterior node (a leaf), _data stores one or more data items.

Note that this is a template class with two template parameters. The
KeyType parameter is the type of the key by which the search is guided. This
will often be int, but not necessarily. The DataType parameter is the type of
the data to be stored in the leaves. To construct an MwayNode for which the
data elements are char * and the keys are int, using the default constructor,
we would invoke MwayNode<int, char *> foo;

1.3 Search in an M-way Tree

Not surprisingly, search in an M-way tree is a generalization of search in a binary
search tree with two significant additional elements:

1. Search always proceeds to a leaf node.
2. When at the leaf, more than one datum might have to be examined.

Here’s a possible version of Search. The search proceeds from MwayNode v,
searching for element elm. If found, it is returned along with success being
true. If not found, some arbitrary element is returned along with success
being false.

template <class KeyType, class DataType>

DataType &

MwayTree<KeyType,DataType>: : Search(MwayNode<KeyType,DataType> * v,
DataType & elm, bool & success)

{
if (v == NULL)
{
success = false;
return elm; // something handy
}
if (v->isLeaf() == true) // linear search of leaf for elm
{
ListItr<DataType> iter;
iter = v->getData().first();
while (!iter.isPastEnd()) // search for elm
{
DataType & test_elm = iter.retrieve();
iter.advance();
if (test_elm == elm)
{
success = true;
return test_elm;
}
}
success = false;
return elm; // an arbitrary value
}

for (int i = 0; i < v->GetNKeys(); i++)
if (elm < v->getKeys()[i])
{
return Search(v->getSubtrees()[i], elm, success);

}

// there are M subtrees and (M - 1) keys
return Search(v->getSubtrees() [v->getNKeys()], elm, success);

}

2 External Storage

Is it worthwhile to reduce the height of search trees by letting M increase?
Although the number of nodes visited decreases, the amount of computation at
each node increases. Where’s the payoft?

For example, consider storing 107 items in a balanced binary search tree and
in an M-way tree of order 10. The height of the binary search tree will be 24
(1g(107) = 23.3) and the height of the M-way tree will be about 7 ([log(107)] =

7). However, in the binary search tree, just one comparison need be done at
each interior node. In the M-way tree, 9 comparisons must be done worst case.

It is generally not worth the extra computation to have a high-order tree
unless somehow it takes much longer time to descend the tree than to compute
the search loop at each node. When the nodes are stored externally (e.g., on
disk), this is precisely the situation that prevails. Disk accesses are very slow
compared to computations in main memory. By increasing M, we widen the
tree and require more computation, but we shorten the height - fewer nodes get
visited, and therefore fewer disk accesses are needed. This leads to the following
observation:

It can make sense to use M-way trees (in particular, B-Trees) when the tree
nodes are stored externally in slow memory.

2.1 Disk Storage

Data is stored on disk in blocks, a fixed number of bytes. Each block may hold
many records. A record corresponds to the data stored at an interior or exterior
node, one node per record.

The time required to access a block is relatively long. The head must be
moved to the appropriate cylinder and the block must then rotate to be placed
under the head. Once the disk is positioned at the block, the entire block is
accessed (read or write). The smallest amount of data that can be accessed on
disk is a block.

By sizing the M-way tree to match the block and record sizes, we can reduce
the number of disk accesses. Compared to disk access time, the time for the
extra computation is insignificant.

3 B-Trees

A B-Tree of order M is an M-way tree with the following constraints:
1. The root is either a leaf or has between 2 and M subtrees.

2. All interior nodes (except possibly root) have between [4] and M sub-
trees (i.e. each interior node is at least “half-full”).

3. All leaves are at the same level. A leaf may store between [%] and L data
elements, where L is a fixed constant, L > 1.

Note: There are numerous varieties of B-Tree. The one described here is
sometimes called a BT tree and is very commonly used.

Figure 3 shows a B-Tree with M = 4 and L = 3. The root node can have
between 2 and M = 4 subtrees. Each of the other interior nodes can have
between [4] = [4] = 2 and M = 4 subtrees and up to M — 1 = 3 keys. Each
exterior node can hold between [£] = [2] =2 and L = 3 data elements.

Each node, interior as well as exterior, is stored on disk. As the tree is
traversed, the node is read into internal storage (RAM). In general, at any

[6 [[12] 18] [26]32] || [[a2] | | [54
NEEENENN

Figure 3: A B-Tree with M=4, L=3

NO

given time during a B-Tree operation, there is only one node in internal storage.
We want to design our B-tree such that each node, interior as well as exterior,
fits within a disk block. This requires us to determine the values of M and L
in terms of the block size, data size, key size, and pointer size.

For example, suppose the B-Tree stores student records. Let’s say the key
for a student record is 8 bytes long. Suppose each student record contains
the student’s name, address and other data totaling 1024 bytes, including the
student ID.

Now, suppose a disk block hold 4096 bytes. Therefore, a disk block can store

‘IIS%J = 4 student records. This leads us to choose L = 4 for the leaves. Each
leaf will hold no more than 4 student records.

How “wide” should the B-Tree be (i.e., what is the value of M)? Each
interior node stores M — 1 keys and M pointers (where a pointer is actually
a block number on disk, not a pointer into RAM). Assume a pointer requires

4 bytes. M is therefore chosen to satisfy:

AM +8(M —1) < 4096
12M < 4104
M < 342

So a good value for M might be 300. For N students, the height of the
B-Tree will be [logsoe(NN)]. For example for N = 105 student records (UMBC
is about 1/10 of this size), the height of the B-Tree with M = 300 would be no
more than 3 (because loggg, 10° = 2.5. Thus, any student record can be found
in 3 disk accesses.

4 Insertion into a B-Tree

Insertion of a new item X starts with a search to find the leaf into which X
belongs. If that leaf has room (it contains fewer than L items), X is added to
the leaf and the leaf is written back to disk. However, if the leaf already contains

L items, it must be split into two leaves. Since we are dealing with L + 1 items,
we are guaranteed that each new leaf will contain at least [£] items. The key
values in the parent node must be updated to match the new leaf structure.
Two disk writes are needed to write the new leaves. One disk read to access the
parent and one disk write to write the updated parent are also required.

It is, however, possible that the parent has no room for a new leaf (it already
has M subtrees). Then, it is also split in the same way. This may propagate all
the way to the root. If so, a new root is created, the original root is split, and
each of these “semi-roots” becomes a subtree of the new root. This shows why
the B-Tree constraints allow the root to have as few as 2 subtrees.

Here’s an example of insertions into the B-Tree of Figure 3 on page 7:

Insert 33 . Traversing the tree from the root, we find that 33 is less than 36
and greater than 22, leading us to the second subtree. Since 33 is greater
than 32, we are led to the third leaf (the one containing 32 and 34). Since
there is room for an additional data item in this leaf, it is inserted (in the
correct order which means reorganizing the leaf). The resulting tree is
shown in Figure 4.

_—
[6[12]8] [l26]s2]l [[42] [[| |54

2| 161](12 |18 22| 26| |32 36| |4 48 |54
4 8|(14| |19 24| |28| |33] |38] |44 50 |56
10 |16/ | 20 30| |34 |40/ |46 5

Figure 4: B-Tree After Insertion of 33

NO

Insert 35 This item also belongs in the third leaf of the second subtree. How-
ever, it will not fit since the leaf already stores 3 items. We split the leaf
into two and update the parent to get the tree of Figure 5.

Insert 21 This item belongs in the fourth leaf of the first subtree of the root
(the leaf containing 18, 19, and 20). Since the leaf is full, we split it.
However, its parent is also full (has 4 subtrees already), so it must also be
split. That would give the root node 5 subtrees, which is not allowed, so
the root must also be split. The resulting tree is shown in Figure 6.

5 Deletion From a B-Tree

Deletion involves many of the same ideas as insertion, but instead of splitting
nodes, we combine them. The deletion process begins by traversing the tree to

| 22]| 36] 4]

N

H26H32H34\ |42 EZN

8 1 4 28 33|35 38 4 50 |5q
10 |16 2 0 46 52

Figure 5: B-Tree After Insertion of 35

\ 20H | 26] 32[34]

2| [6][12 12 22| [26] [32][34
4| 8|14 2 £283335
10/ |16

Figure 6: B-Tree After Insertion of 21

find the leaf from which the item is to be deleted. If, after the deletion, the leaf
still has at least [%] items, no further action is required - the leaf is written
back to disk.

However, if the number of items in the leaf falls below [%], we take an item
from a neighboring leaf if the number of items in the neighbor would not fall
below the minimum allowed. If the neighbor cannot give up an item, then we
combine the leaf with its neighbor. This will work because both the leaf and its
neighbor have fewer than (%] items, so the combined number will not exceed
L.

This combining process could result in the parent node having too few sub-
trees. In that case, the same process of borrowing or combining is used. This
could take us all the way to the root. In that case, we delete the root and make
its subtree be the new root.

