
1

CMSC 341
Lecture 21

Announcements
Clarifications on website for Proj5
Project Preview tonight and tomorrow

Proj5 discussion
dbx overview and tips

2

Dijkstra’s Algorithm
Vertex v, w;
start.dist = 0;
for (;;) {

v = smallest unknown distance vertex;
if (v == NOT_A_VERTEX) break;
v.known = TRUE;
for each w adjacent to v

if (!w.known)
if (v.dist + cvw < w.dist) {

decrease (w.dist to v.dist + cvw);
w.path = v;
}

}

a b

cd

g

e j i

f h

1

3

4

31

1

2 7

3

4

1

2

5

3

Edge Types
After DFS, edges can be classified into the following types:

– tree edges -- a discovered vertex v1 encounters an
undiscovered vertex v2; the edge between them is a tree
edge

– back edges -- a discovered edge v1 encounters a
discovered but unfinished vertex v2; the edge between
them is a back edge. (Graph has a cycle if and only if
there is a back edge.)

– forward edges (directed graphs only) -- a discovered
vertex v1 encounters a finished vertex v2

– cross edges (directed graphs only) -- a discovered
vertex v1 encounters a finished vertex v2 and d[v1] >
d[v2]

Edge Types (after DFS completion)
Condition Type of Edge (v1, v2)

If (d[v1] < d[v2])
 && (f[v1] > f[v2])

Tree

Else if (d[v1] > d[v2])
 && (f[v1] < f[v2])

Back

Else if (d[v1] > d[v2])
 && (f[v1] > f[v2])

Cross

Else (d[v1] < d[v2]-1)
 && (f[v1] > f[v2])

Forward

4

Traversal Performance
What is the performance of DF and BF traversal?

Each vertex appears in the stack or queue exactly once.
Therefore, the traversals are at least O(|V|). However, at
each vertex, we must find the adjacent vertices. Therefore,
df- and bf-traversal performance depends on the
performance of the getAdjacent operation.

getAdjacent
Method 1: Look at every vertex (except u), asking “are you

adjacent to u?”
List L = new List(<class of vertex>);
for (each vertex v, except u)

if (isConnected(u,v))
L.doInsert(v);

Assuming O(1) performance on isConnected,
getAdjacent has O(|V|) performance and traversal
performance is O(|V2|);

5

getAdjacent (cont)
Method 2: Look only at the edges which impinge on u.

Therefore, at each vertex, the number of vertices to be
looked at is D(u), the degree of the vertex (use outdegree
for directed graph).

This approach is O(D(u)). The traversal performance is

which is max(O(|V|), O(|E|))) = O(|V| + |E|).

)())((
1

EOvDO
V

i
i =∑

=

Number of Edges
Theorem: The number of edges in an undirected graph

G=(V,E) is O(|V|2)
Proof: Suppose G is fully connected. Let p =|V|. We have the

following situation:
vertex connected to
 1 2,3,4,5,… , p
 2 1,3,4,5,… , p
 …
 p 1,2,3,4,… ,p-1

– There are p(p-1)/2 = O(|V|2) edges.
So O(|E|) = O(|V|2).

6

Adjacency Table Implementation
Uses table of size |V| × |V| where each entry (i,j) is boolean

– TRUE if there is an edge from vertex i to vertex j
– FALSE otherwise
– store weights when edges are weighted

a

b e

c d

a

b e

c d

a b c d e
a 0 1 0 0 1
b 1 0 1 1 0
c 0 1 0 1 0
d 0 1 1 0 1
e 1 0 0 1 0

a b c d e
a
b
c
d
e

Adjacency Table (cont.)
Storage requirement:
Performance:

GetDegree(u),
getInDegree(u),
getOutDegree(u)
GetAdjacent(u)

GetAdjacentFrom(u)

IsConnected(u,v)

