CMSC 341 Lecture 21

Dijkstra's Algorithm

Edge Types After DFS, edges can be classified into the following types: *tree edges* -- a discovered vertex v₁ encounters an undiscovered vertex v₂; the edge between them is a tree edge *back edges* -- a discovered edge v₁ encounters a discovered but unfinished vertex v₂; the edge between them is a back edge. (Graph has a cycle if and only if there is a back edge.) *forward edges* (directed graphs only) -- a discovered vertex v₁ encounters a finished vertex v₂ *cross edges* (directed graphs only) -- a discovered vertex v₁ encounters a finished vertex v₂ and d[v₁] > d[v₂]

Condition	Type of Edge (v_1 , v_2
If $(d[v_1] < d[v_2])$ && $(f[v_1] > f[v_2])$	Tree
Else if $(d[v_1] > d[v_2])$ && $(f[v_1] < f[v_2])$	Back
Else if $(d[v_1] > d[v_2])$ && $(f[v_1] > f[v_2])$	Cross
Else $(d[v_1] < d[v_2]-1)$ && $(f[v_1] > f[v_2])$	Forward

Traversal Performance

What is the performance of DF and BF traversal?

Each vertex appears in the stack or queue exactly once. Therefore, the traversals are at least O(|V|). However, at each vertex, we must find the adjacent vertices. Therefore, df- and bf-traversal performance depends on the performance of the getAdjacent operation.

getAdjacent Method 1: Look at every vertex (except u), asking "are you adjacent to u?" List L = new List(<class of vertex>); for (each vertex v, except u) if (isConnected(u,v)) L.doInsert(v); Assuming O(1) performance on isConnected, getAdjacent has O(|V|) performance and traversal performance is O(|V²|);

	Adjacency Ta	able (cont.)	
Sto	rage requirement:		
Per	formance:		
	GetDegree(u), getInDegree(u), getOutDegree(u)		
	GetAdjacent(u)		
	GetAdjacentFrom(u)		
	IsConnected(u,v)		_