CMSC 341

Lecture 21

Announcements

Clarifications on website for Proj5
Project Preview tonight and tomorrow
Proj5 discussion
dbx overview and tips

Dijkstra's Algorithm

```
Vertex v, w;
start.dist = 0;
for (;;) {
    v = smallest unknown distance vertex;
    if (v == NOT_A_VERTEX) break;
    v.known = TRUE;
    for each w adjacent to v
        if (!w.known)
            if (v.dist + cvw < w.dist) {
                decrease (w.dist to v.dist + cvw);
                    w.path = v;
                    }
    }
```


Edge Types

After DFS, edges can be classified into the following types:

- tree edges -- a discovered vertex v_{1} encounters an undiscovered vertex v_{2}; the edge between them is a tree edge
- back edges -- a discovered edge v_{1} encounters a discovered but unfinished vertex v_{2}; the edge between them is a back edge. (Graph has a cycle if and only if there is a back edge.)
- forward edges (directed graphs only) -- a discovered vertex v_{1} encounters a finished vertex v_{2}
- cross edges (directed graphs only) -- a discovered vertex v_{1} encounters a finished vertex v_{2} and $d\left[v_{1}\right]$ > $\mathrm{d}\left[\mathrm{v}_{2}\right]$

Edge Types (after DFS completion)

Condition Type of Edge $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$

If $\left(\mathrm{d}\left[\mathrm{v}_{1}\right]<\mathrm{d}\left[\mathrm{v}_{2}\right]\right)$ $\& \&\left(\mathrm{f}\left[\mathrm{v}_{1}\right]>\mathrm{f}\left[\mathrm{v}_{2}\right]\right)$	Tree
Else if $\left(\mathrm{d}\left[\mathrm{v}_{1}\right]>\mathrm{d}\left[\mathrm{v}_{2}\right]\right)$ $\& \&\left(\mathrm{f}\left[\mathrm{v}_{1}\right]<\mathrm{f}\left[\mathrm{v}_{2}\right]\right)$	Back
Else if $\left(\mathrm{d}\left[\mathrm{v}_{1}\right]>\mathrm{d}\left[\mathrm{v}_{2}\right]\right)$ $\& \&\left(\mathrm{f}\left[\mathrm{v}_{1}\right]>\mathrm{f}\left[\mathrm{v}_{2}\right]\right)$	Cross
Else $\left(\mathrm{d}\left[\mathrm{v}_{1}\right]<\mathrm{d}\left[\mathrm{v}_{2}\right]-1\right)$ $\& \&\left(\mathrm{f}\left[\mathrm{v}_{1}\right]>\mathrm{f}\left[\mathrm{v}_{2}\right]\right)$	Forward

Traversal Performance

What is the performance of DF and BF traversal?

Each vertex appears in the stack or queue exactly once.
Therefore, the traversals are at least $\mathrm{O}(|\mathrm{V}|)$. However, at each vertex, we must find the adjacent vertices. Therefore, df- and bf-traversal performance depends on the performance of the getAdjacent operation.

getAdjacent

Method 1: Look at every vertex (except \mathbf{u}), asking "are you adjacent to u?"

```
List L = new List(<class of vertex>);
    for (each vertex v, except u)
        if (isConnected (u,v))
        L.doInsert(v);
```

Assuming $\mathrm{O}(1)$ performance on isConnected, getAdjacent has $\mathrm{O}(|\mathrm{V}|)$ performance and traversal performance is $\mathrm{O}\left(\left|\mathrm{V}^{2}\right|\right)$;

getAdjacent (cont)

Method 2: Look only at the edges which impinge on u. Therefore, at each vertex, the number of vertices to be looked at is $\mathrm{D}(\mathrm{u})$, the degree of the vertex (use outdegree for directed graph).

This approach is $O(D(u))$. The traversal performance is

$$
O\left(\sum_{i=1}^{|V|} D\left(v_{i}\right)\right)=O(E)
$$

which is $\max (\mathrm{O}(|\mathrm{V}|), \mathrm{O}(|\mathrm{E}|)))=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$.

Number of Edges

Theorem: The number of edges in an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
Proof: Suppose G is fully connected. Let $\mathrm{p}=|\mathrm{V}|$. We have the following situation:

vertex	connected to
1	$2,3,4,5, \ldots, \mathrm{p}$
2	$1,3,4,5, \ldots, \mathrm{p}$
\ldots	$1,2,3,4, \ldots, \mathrm{p}-1$

- There are $\mathrm{p}(\mathrm{p}-1) / 2=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ edges.

So $\mathrm{O}(|\mathrm{E}|)=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$.

Adjacency Table Implementation

Uses table of size $|\mathrm{V}| \times|\mathrm{V}|$ where each entry (i, j) is boolean

- TRUE if there is an edge from vertex i to vertex j
- FALSE otherwise
- store weights when edges are weighted

Adjacency Table (cont.)
Storage requirement:
Performance:

GetDegree(u), getInDegree(u), getOutDegree(u)	
GetAdjacent(u)	
GetAdjacentFrom(u)	
IsConnected(u,v)	

