
1

CMSC 341
Lecture 20

Announcements

2

Basic Graph Definitions
A graph G = (V,E) consists of a finite set of vertices, V, and a

set of edges, E. Each edge is a pair (v,w) where v, w ∈ V.
– V and E are sets, so each vertex v ∈ V is unique, and each edge e

∈ E is unique.
– Edges are sometimes called arcs or lines.
– Vertices are sometimes called nodes or points.

A directed graph is a graph in which the edges are ordered
pairs. That is, (u,v) ≠ (v,u), u, v ∈ E. Directed graphs are
sometimes called digraphs.

An undirected graph is a graph in which the edges are
unordered pairs. That is, (u,v) = (v,u).

undirected graph directed graph

a

b e

c d

a

b e

c d

3

Basic Graph Definitions (cont.)
Vertex v is adjacent to vertex w if and only if (v,w) ∈ E.

(Book calls this adjacent from)
Vertex v is adjacent from vertex w if and only if (w,v) ∈ E.
An edge may also have:

– weight or cost -- an associated value
– label -- a unique name

The degree of a vertex u in an undirected graph is the number
of vertices adjacent to u. Degree is also called valence.

The indegree (outdegree) of a vertex u in a directed graph is
the number of vertices adjacent to (from) u.

Paths in Graphs
A path in a graph is a sequence of vertices w1, w2, w3, … , wn

such that (wi, wi+1) ∈ E for 1 ≤ i < n.
The length of a path in a graph is the number of edges on the

path. The length of the path from a vertex to itself is 0.
A simple path is a path such that all vertices are distinct,

except that the first and last may be the same.
A cycle in a graph is a path w1, w2, w3, … , wn , w ∈ V such

that:
– there are at least two vertices on the path
– w1 = wn (the path starts and ends on the same vertex)
– if any part of the path contains the subpath wi, wj, wi, then each of

the edges in the subpath is distinct.

A simple cycle is one in which the path is simple.

4

Connectedness in Graphs
An undirected graph is connected if there is a path from every

vertex to every other vertex.
A directed graph is strongly connected if there is a path from

every vertex to every other vertex.
A directed graph is weakly connected if there would be a path

from every vertex to every other vertex, disregarding the
direction of the edges.

A complete graph is one in which there is an edge between
every pair of vertices.

A connected component of a graph is any maximal connected
subgraph. Connected components are sometimes simply
called components.

a b

cd

g

e j i

f h

5

A Graph ADT
Has some data elements

– vertices
– edges

Has some operations
– getDegree(u) -- returns the degree of vertex u (undirected graph)
– getInDegree(u) -- returns the indegree of vertex u (directed graph)
– getOutDegree(u) -- returns the outdegree of veretx u (directed

graph)
– getAdjacent(u) -- returns a list of the vertices adjacent from a

vertex u (directed and undirected graphs)
– isConnected(u,v) -- returns TRUE if vertices u and v are

connected, FALSE otherwise (directed and undirected graphs)

Graph Traversals
Like trees, can be traversed breadth-first or depth-first.

– Use stack for depth-first traversal.
– Use queue for breadth-first traversal.

Unlike trees, need to specifically guard against repeating a
path from a cycle. Can mark each vertex as “visited” when
we encounter it and not consider visited vertices more than
once.

6

Breadth-First Traversal
Queue q = new Queue();
graphvertex u;

for all v, d[v] = ∞ // mark each vertex unvisited
q.enqueue(startvertex); // start with any vertex
d[startvertex] = 0; // mark visited
while (!q.isEmpty()) {

u = q.dequeue();
for (each vertex w adjacent from u)

if (d[w] == ∞) { // w not marked as visited
d[w] = d[u]+1; // mark visited
q.enqueue(w);
}

}

v1

v2

v4

v3

v5

7

Depth First Traversal
dfs(Graph G) {

for (each v ∈ V)
dfs(v)

}

dfs(Vertex v) {
markVisited(v);
for(each vertex w adjacent from u)

if (w is not marked as visited)
dfs(w)

}

v1

v2

v4

v3

v5

8

DFS (stack version)
Stack s = new Stack();
GraphVertex u;
GraphVertex startvertex = graph.getStartVertex();

s.push(startvertex);
markVisited(startvertex);
while (!s.isEmpty()) {

u = s.Pop();
for (each vertex w adjacent to u)

if (w is not marked as visited) {
markVisited(w);
s.push(w);
}

}

Unweighted Shortest Path Problem
Unweighted shortest-path problem: Given as input an

unweighted graph, G = (V,E), and a distinguished vertex,
s, find the shortest unweighted path from s to every other
vertex in G.

After running BFS algorithm with s as starting vertex, the
shortest path length from s to i is given by d[i].

9

Weighted Shortest Path Problem
Single-source shortest-path problem: Given as input a

weighted graph, G = (V,E), and a distinguished vertex, s,
find the shortest weighted path from s to every other vertex
in G.

Use Dijkstra’s algorithm
– keep tentative distance for each vertex giving shortest

path length using vertices visited so far
– keep vertex before this vertex (to allow printing of

path)
– at each step choose the vertex with smallest distance

among the unvisited vertices (greedy algorithm)

Dijkstra’s Algorithm
Vertex v, w;
start.dist = 0;
for (;;) {

v = smallest unknown distance vertex;
if (v == NOT_A_VERTEX) break;
v.known = TRUE;
for each w adjacent to v

if (!w.known)
if (v.dist + cvw < w.dist) {

decrease (w.dist to v.dist + cvw);
w.path = v;
}

}

10

a b

cd

g

e j i

f h

1

3

4

31

1

2 7

3

4

1

2

5

