Prolog | ||

Lists

e []istheempty list.

e [X, 2+2, [a, b, c]] isalist of three
elements.

» Thefirst dement inthelistisits“head”.

» Thelist with the head removed isthe “tail”.

Lists

* Unification can be performed on lists:
-[a,b,c]=[X,Y,Z] resultsin
e resultsin X=a, Y=b, Z=c
-[a, b, ¢] = [Head | Tail]
e resultsin Head =a, Tail =[b, c]
» Nonempty lists can be matched against
[Head|Tail].
» Empty listswill not match [Head|Tail].

Matching Heads and Tails

If [a, b, c] = [Head | Tail], then
a=Head and [b, c] = Tail

If [a, b, c] = [X, Y | Tail], then
a=X, b=Y, and [c] = Tall

If [a, b, c] = [X, Y, Z | Tail], then
a=X, b=Y, c=2Z, and [] = Tail

Thetail of alistisawaysitself alist.

e [X]Y,Z] isn'tlegd.

Making Use of Unification Structures and Lists

* Prolog has no functions. But you can use a » The“univ” operator, =.. , can be used to
parameter as an “output variable.” convert between structures and lists:
— first([Head | Tail], X) :- X = Head. — loves(chuck, X) =.. [loves, chuck, X]

* You can use unification in parameter liststo
do much of the needed work
—first([X | _1, X).
—second([, X | _1, X).
—third([_, _, X | _1, X).

» Double quotesindicate alist of ASCII
values.
- “abc” = [97, 98, 99]
— Thisisn't usualy very useful

Recursion member
» Recursionisfully supported e member(X, [X| _1]).
e element(l, [X | _1, X). e member(X, [_ | Y]) :- member(X, Y).
e element(N, [_ | X],Y) :- » Asusual, base cases go first, then recursive
Mis N -1, cases.
element(M, X, Y). « Thereisin general no need for a“fail” case,
» Thisisthetypical way to processlists: do because that’ s automatic.
something with the head, recur with the tail. —member(_, []) :- fail.

Accumulated Information

* If you reach a clause, you can assume that
the earlier clauses of the same predicate
have failed.

« member(X, [X | _]).

* If you fail thisclause, thefirst element is
not the one you want, so
member(X, [_ | Y] :- member(X, Y).

Backtracking and Beads

» EachPrologcal islikea“bead” inastring
of beads:

call =—> ——> exit
fail <= K—=redo

loves(chuck, X) :- female(X), rich(X).

call

Fail Loops

* Itispossibleto build a“fail loop” in Prolog

e print_elements(List) :-
member(X, List), write(X), nl,
fail.

 But recursion isamost aways better:

print_elements([Head|Tail]) :-

write(Head), nl,
print_elements(Tail).

11

loves(chuck, X) female(X) rich(X) (::cijto
fail ;
Forcing a predicate to succeed

notice_objects_at(Place) :-
at(X, Place),
write("There is a "), write(X),
write(* here.”), nl,
fail.

notice_objects_at().

12

Forcing apredicate to fall

loves(chuck, X) :-
really _ugly(X), !, fail.

loves(chuck, X) :-
female(X), rich(X).

13

"Wrapping" another predicate

» The buzz_off/0 predicate might succeed
or fal. Thisisusually what we want.

» But sometimes we want to ignorefailure.

optional_buzz_off :-
buzz_off.

optional_buzz_off.

14

Asserting Clauses

» assert(new_clause).
— assert(path(garden, n, toolshed)).

— assert((loves(chuck,X) :- female(X) ,
rich(X))).

» asserta(new_clause).
e assertz(new_clause).

15

Removing clauses

e retract(clause).
— retract(path(garden, n, toolshed)).
- retract(path(X, Y, X)).
- retract((loves(chuck,X) :- female(X) ,
rich(X))).
= abolish(path, 3).

16

Marking Clauses as “ Dynamic”

» Standard Prolog alows you to assert and
retract clauses without any restrictions.

 Sicstus and some others require you to mark
variable clauses as “dynamic.”

e :- dynamic i_am_at/1, at/2, alive/0.
» The“:-" at the beginning says “do it now.”

17

Solving problems with dynamic

* If Prolog already knows a clause, and it's
static, it'stoo late to mark it dynamic

* Prolog must see :- dynamic functor/arity
beforeit sees any clauses of functor/arity.

— Thisincludes clauses loaded in from an earlier
consult

* You canrestart Sicstus Prolog, or...
* ...you can use abolish(functor, arity)

18

Arithmetic

» Theequalssign, =, means “unify.”

e 2+2 does not unify with 4.

 To forcearithmetic to be performed, use
“is’: Xis2+2,X=4,

e Comparisons =:= =/= > >= < <= dw
force their operands to be evaluated.

e+ - * / mod, when evaluated, have their
usual meanings.

19

The End

20

