
1

Prolog IIIProlog III
2

Lists

• [] is the empty list.
• [x, 2+2, [a, b, c]] is a list of three

elements.
• The first element in the list is its “head”.
• The list with the head removed is the “tail”.

3

Lists

• Unification can be performed on lists:
– [a, b, c] = [X, Y, Z] results in

• results in X = a, Y = b, Z = c
– [a, b, c] = [Head | Tail]

• results in Head = a, Tail = [b, c]
• Nonempty lists can be matched against

[Head|Tail].
• Empty lists will not match [Head|Tail].

4

Matching Heads and Tails

• If [a, b, c] = [Head | Tail], then
a = Head and [b, c] = Tail

• If [a, b, c] = [X, Y | Tail], then
a = X, b = Y, and [c] = Tail

• If [a, b, c] = [X, Y, Z | Tail], then
a = X, b = Y, c = Z, and [] = Tail

• The tail of a list is always itself a list.
• [X | Y, Z] isn’t legal.

5

Making Use of Unification

• Prolog has no functions. But you can use a
parameter as an “output variable.”
– first([Head | Tail], X) :- X = Head.

• You can use unification in parameter lists to
do much of the needed work
– first([X | _], X).
– second([_, X | _], X).
– third([_, _, X | _], X).

6

Structures and Lists

• The “univ” operator, =.. , can be used to
convert between structures and lists:
– loves(chuck, X) =.. [loves, chuck, X]

• Double quotes indicate a list of ASCII
values:
– “abc” = [97, 98, 99]
– This isn’t usually very useful

7

Recursion

• Recursion is fully supported
• element(1, [X | _], X).
• element(N, [_ | X], Y) :-

M is N - 1,
element(M, X, Y).

• This is the typical way to process lists: do
something with the head, recur with the tail.

8

member
• member(X, [X | _]).
• member(X, [_ | Y]) :- member(X, Y).
• As usual, base cases go first, then recursive

cases.
• There is in general no need for a “fail” case,

because that’s automatic.
– member(_, []) :- fail.

9

Accumulated Information

• If you reach a clause, you can assume that
the earlier clauses of the same predicate
have failed.

• member(X, [X | _]).
• If you fail this clause, the first element is

not the one you want, so
member(X, [_ | Y] :- member(X, Y).

10

Backtracking and Beads

• Each Prolog call is like a “bead” in a string
of beads:

loves(chuck, X) :- female(X), rich(X).

call
fail

exit
redo

loves(chuck, X) female(X) rich(X) exit
redo

call

fail

11

Fail Loops

• It is possible to build a “fail loop” in Prolog
• print_elements(List) :-

member(X, List), write(X), nl,
fail.

• But recursion is almost always better:
print_elements([Head|Tail]) :-

write(Head), nl,
print_elements(Tail).

12

Forcing a predicate to succeed

notice_objects_at(Place) :-
at(X, Place),
write('There is a '), write(X),
write(' here.'), nl,
fail.

notice_objects_at(_).

13

Forcing a predicate to fail

loves(chuck, X) :-
really_ugly(X), !, fail.

loves(chuck, X) :-
female(X), rich(X).

14

"Wrapping" another predicate

• The buzz_off/0 predicate might succeed
or fail. This is usually what we want.

• But sometimes we want to ignore failure.

optional_buzz_off :-
buzz_off.

optional_buzz_off.

15

Asserting Clauses

• assert(new_clause).
– assert(path(garden, n, toolshed)).
– assert((loves(chuck,X) :- female(X) ,

rich(X))).
• asserta(new_clause).
• assertz(new_clause).

16

Removing clauses

• retract(clause).
– retract(path(garden, n, toolshed)).
– retract(path(X, Y, X)).
– retract((loves(chuck,X) :- female(X) ,

rich(X))).
• abolish(path, 3).

17

Marking Clauses as “Dynamic”

• Standard Prolog allows you to assert and
retract clauses without any restrictions.

• Sicstus and some others require you to mark
variable clauses as “dynamic.”

• :- dynamic i_am_at/1, at/2, alive/0.
• The “:-” at the beginning says “do it now.”

18

Solving problems with dynamic
• If Prolog already knows a clause, and it's

static, it's too late to mark it dynamic
• Prolog must see :- dynamic functor/arity

before it sees any clauses of functor/arity.
– This includes clauses loaded in from an earlier

consult
• You can restart Sicstus Prolog, or…
• … you can use abolish(functor, arity)

19

Arithmetic

• The equals sign, =, means “unify.”
• 2+2 does not unify with 4.
• To force arithmetic to be performed, use

“is”: X is 2 + 2, X = 4.
• Comparisons =:= =/= > >= < <= also

force their operands to be evaluated.
• + - * / mod, when evaluated, have their

usual meanings.
20

The End

