Prolog ||

The Notion of Unification

Unification is when two things “become one”
Unification iskind of like assignment
Unification iskind of like equality in agebra
Unification ismostly like pattern matching
Example:

— loves(john, X) can unify with loves(john, mary)
—and in the process, X gets unified with mary

Unification |

» Any vaue can be unified with itself.
— weather(sunny) = weather(sunny)
* A variable can be unified with another variable.
-X=Y
A variable can be unified with (“instantiated
to”) any Prolog value.
— Topic = weather(sunny)

Unification |l

e Two different structures can be unified if
their constituents can be unified.
— mother(mary, X) = mother(Y, father(2))
» A variable can be unified with astructure
containing that same variable. Thisis
usualy aBad Idea.
- X =f(X)

Unification 11

» Theexplicit unification operator is =
* Unification is symmetric:
Steve = father(isaac)
means the same as
father(isaac) = Steve
» Most unification happensimplicitly, asa
result of parameter transmission.

Scope of Names

» The scope of avariableisthe single clausein
which it appears.

 The scope of the “anonymous’ (“don't care’)
variable, _, isitsalf.
—loves(_,) =loves(john, mary)

» Avariablethat only occursonceinaclauseis
auseless singleton; you should replace it
with the anonymous variable

Writing Prolog Programs

 Suppose the database contains

loves(chuck, X) :- female(X), rich(X).

female(jane).
and we ask who Chuck loves,
?- loves(chuck, Woman).
» female(X) findsavduefor X , say, jane

« rich(X) then tests whether Janeisrich

Clauses as Cases

* A predicate consists of multiple clauses,
each of which represents a“case’

grandson(X,Y) :- son(X,Z), son(Z,Y).
grandson(X,Y) :- son(X,Z), daughter(Z,Y).

abs(X, Y) - X<0,Yis-X
abs(X, X) :- X>=0.

Ordering

e Clausesaredwaystried in order
e buy(X) :- good(X).
buy(X) :- cheap(X).

cheap(Java 2 Complete).
good(‘Thinking in Java).

* What will buy(X) choosefirst?

Ordering Il

* Tryto handle more specific cases (those
having more variables instantiated) first.

dislikes(john, bill).
dislikes(john, X) :- rich(X).
dislikes(X, Y) :- loves(X, Z), loves(Z, Y).

10

Ordering Il

» Some "actions" cannot be undone by
backtracking over them:
—write, nl, assert, retract, consult
* Do tests before you do undoable actions:
— take(A) :-
at(A, in_hand),
write("You\'re already holding it!"),
nl.

11

Recursion

» Handle the base cases first
ancestor(X, Y) :- child(Y, X).
(Xisan ancestor of Yif Yisa child of X.)

* Recur only with asimpler case
ancestor(X, Y) :-

child(z, X), ancestor(Z, Y).

(Xisan ancestor of Yif Zisa child of X and
Zisan ancestor of Y).

12

Case Leve

* You can often choosethe"level" a which
you want cases to be defined.

son(isaac, steven).
child(X, Y) :- son(X, Y).

male(isaac).
child(isaac, steven).
son(X, Y) :- male(X), child(X, Y).

13

Recursive Loops

* Prolog proofs must be tree structured, that
is, they may not contain recursive loops.

— child(X,Y) :- son(X,Y).
—son(X,Y) :- child(X,Y), male(X).

— ?-son(isaac, steven). ??? May loop!

» Why? Neither child/2 nor son/2 isaomic

14

Cut and Cut-fail

» Thecut, !, isacommit point. It commits to:
— the clausein which it occurs (can't try another)
— everything up to that point in the clause

* Example:
— loves(chuck, X) :- female(X), !, rich(X).

— Chuck lovesthefirst female in the database, but only if
sheisrich.

 Cut-fail, (!, fail), means give up now and don't
even try for another solution.

15

What you can't do

» Thereare no functions, only predicates

* Prologis programming inlogic, therefore
there are few control structures

* There are no assignment statements; the state
of the program iswhat's in the database

16

Workarounds |

» Therearefew control structuresin Prolog,
BUT...

* You don't need IF because you can use multiple
clauses with "tests" in them

* You seldom need loops because you have
recursion

* You can, if necessary, construct a"fail loop"

17

Fail Loops

notice_objects_at(Place) :-
at(X, Place),
write("There is a *), write(X),
write(* here."), nl,
fail.
notice_objects_at().

» Usefail loops sparingly, if at all.

18

Workarounds |1

» There are no functions, only predicates,
BUT...

* A cdl to apredicate can instantiate variables:
female(X) can either
—look for avaluefor X that satisfies female(X), or

—if X aready has avaue, test whether female(X)
can be proved true

» By convention, output variables are put last

19

Workarounds 11

» There are no assignment statements, BUT...

» the Prolog database keeps track of program state
— assert(at(fly, bedroom))
— bump_count :-
retract(count(X)),
Yis X +1,
assert(count(Y)).
» Don't get carried away and misuse this!

20

The End

