
UMBC CMSC 331. 1

Lisp Lisp 
MacrosMacros

UMBC CMSC 331. 2

What are Macros?

•Lisp macros allow you to define operators 
that are implemented by transformation.

•The definition of a macro is essentially a 
function that generates lisp code.
–A program that writes programs.

•Functions vs. macros:
–A function produces results.
–A macro produces expressions - which, 

when evaluated, produce results.

UMBC CMSC 331. 3

Example: the macro nil!

•We want to write a macro nil!, which sets its 
arguments to nil.
(nil! x)

should be the same as:
(setf x nil)

Here’s how we do it in CL:
> (defmacro nil! (var) (list ‘setq var nil))
NIL!

UMBC CMSC 331. 4

Macroexpansion

•What happens when we type the macro call (nil! x) 
into the toplevel?

•Lisp interprets nil! has a macro and:
– builds the expression specified by the definition, (list ‘setq var nil), 

then
– evaluates that expression in place of the original macro call.

•What happens when the compiler discovers a call 
to nil!?
– builds the expression specified by the definition, (list ‘setq var nil), 

then
– compiles that expression in place of the original macro call.



UMBC CMSC 331. 5

Backquote

•Backquote is a special version of quote.
•It is used to create templates.
•It is used mostly in macro expressions.

`(a b c)  is equal to ‘(a b c)
•Backquote becomes useful only when it appears in 

combination with common , and comma-at ,@.

UMBC CMSC 331. 6

•A backquoted list is equivalent to a call to list with 
the elements quoted.

`(a b c)  is equal to (list ‘a ‘b ‘c)
• When a comma appears before one of the elements of the 

list,  it has the effect of canceling out the quote that would 
have been put in there.

`(a ,b c ,d)  is equal to (list ‘a b ‘c d)
•Commas work no matter how deeply they appear 

within a nested list:
> (setf  a 1  b 2   c 3)
3
> `(a  ,b  c)
(A  2  C)
> `(a  (,b  c))
(A   (2  C))

UMBC CMSC 331. 7

•And, they may even appear within quotes, or 
within quoted sublists:

> `(a  b  ,c  (‘,(+  a b c)) (+  a  b) ‘c ‘((,a  ,b)))
(A   B   3   (‘6)  (+  A B)   ‘C   ‘((1  2)))
•One comma counteracts the effect of one
backquote,  so commas must match backquotes.

UMBC CMSC 331. 8

What is a backquote for?

•Backquote is usually used for making lists.
•The advantage of a backquote is that it 
makes expressions easier to read:

(defmacro nil! (var) (list ‘setf  var nil))
(defmacro nil! (var)  `(setf  ,var  nil))



UMBC CMSC 331. 9

Comma-at:  ,@

• Comma-at is useful in macros that have rest parameters 
representing, for example, a body of code.

• Suppose, we want a while macro that will evaluate its body 
so long as an initial test expression remains true:

> (let ((x 0))
(while (<  x  10)
(princ x)
(incf x)))

0123456789
NIL

UMBC CMSC 331. 10

Example: while macro

•We define the macro while by using the rest 
parameter to collect a list of the expression in the 
body,  then using comma-at to splice this list into 
the expansion:

(defmacro  while  (test &rest body)
`(do () ((not ,test)) ,@body))

So (while (< x 10) (print x)(setq x (+ x 1))) becomes 
(do (( not (< x 10)) (print x) (setq x (+ x 1)))

UMBC CMSC 331. 11

Macro Design and Problems

•Writing macros is a distinct kind of 
programming, with its own unique aims and 
problems.

•When you start writing macros, you have to 
start thinking like a language designer.

•Two problems
–Variable capture
–Multiple evaluations

UMBC CMSC 331. 12

Variable Capture

(defmacro ntimes (n &rest body)
`(do ((x 0 (+ x 1)))

((>=  x ,n))
,@body))

> (ntimes 10
(princ “,”))

..........
NIL



UMBC CMSC 331. 13

•Variable capture happens when a variable 
used in a macro expansion happens to have 
the same name as a variable existing in the 
context where the expansion is inserted:

(let ((x 10)) 
(ntimes 5 (setf  x  (+  x  1)))
x)

10

UMBC CMSC 331. 14

Macro expansion

Macro expansion highlights the problem:
(macroexpand 

‘(let ((x 10)) (ntimes 5 (setf  x  (+  x  1)))  x))
(let ((x  10))
(do  ((x  0  (+  x  1)))

((>=  x  5))
(setf x  (+  x  1)))

x)

UMBC CMSC 331. 15

Solution
Generate a unique name for the variable introduced 

by the macro.
(gensym) returns a symbol that is guarenteed not to 

be in use.
> (gensym)
#:G0001

> (defmacro ntimes (n &rest body)
(let ((g  (gensym)))
`(do ((,g 0 (+  ,g  1)))

((>=  ,g  ,n))
,@body)))

UMBC CMSC 331. 16

Multiple Evaluation

•Because the first argument is inserted 
directly into the do, it will be evaluated on 
each iteration.

•This mistake shows most clearly when the 
first argument is an expression with side-
effects:



UMBC CMSC 331. 17

> (let ((v  10))
(ntimes  (setf  v (- v 1))
(princ “.”)))

.....
NIL
•Since v is initially 10 and setf returns the 
value of its second argument, this should 
print nine periods.  In fact it prints only five.

•We need to look at the macroexpansion.
UMBC CMSC 331. 18

(let ((v  10))
(do ((#:g002 0 (+ #:g1 1)))

((>= #:g002  (setf  v  (- v  1))))
(princ “.”)

•On each iteration we compare the iteration 
variable not against 9, but against an 
expression that decreases each time it is 
evaluated.

UMBC CMSC 331. 19

Solution
•Set a variable to the value of the expression in 

question before any iteration.  This involves 
another gensym:

(defmacro ntimes (n &rest body)
(let ((g (gensym))  (h (gensym)))

`(let ((,h ,n))
(do ((,g 0  (+  ,g  1)))

((>=   ,g ,h))
,@body))))


