
11/30/2000

UMBC CMSC 331. 1

Common LispCommon Lisp
LISTSLISTS

Some material adapted from J.E.
Spragg, Mitthögskolan

UMBC CMSC 331. 2

Lists in Lisp
•Lists are the fundamental data structures in Lisp.
•However, it is not the only data structure.

–There are arrays, characters, strings, etc.
–Common Lisp has moved on from being

merely a LISt Processor.
•However, to understand Lisp you must

understand lists
– common functions on them
– how to build other useful data structures using them.

UMBC CMSC 331. 3

In the beginning was the cons

•What cons really does is combines two objects into
a two-part object called a cons.

•Conceptually, a cons is a pair of pointers.
•The first one is the car, and the second is the cdr.
•Conses provide a convenient representation for

pairs of any type.
•The two halves of a cons can point to any kind of

object, including conses.
•This is the mechanism for building lists.

UMBC CMSC 331. 4

Pairs

•Lists in CL are defined as pairs.
•Any non empty list can be considered as a

pair of the first element and the rest of the
list.

•We use one half of the cons to point to the
first element of the list, and the other to point
to the rest of the list (which is either another
cons or nil).

11/30/2000

UMBC CMSC 331. 5

Box notation

nil

a

A one element list (A)

nil

a b c

A list of 3 elements (A B C)

UMBC CMSC 331. 6

What sort of list is this?

nil

a d

b c

> (setf z (list ‘a (list ‘b ‘c) ‘d))
(A (B C) D)

?(car (cdr z))
???

UMBC CMSC 331. 7

Consp
•The function consp returns true if its

argument is a cons.
•So listp could be defined:
(defun myListp (x) (or (null x) (consp x)))

•Since everything that is not a cons is an
atom, the predicate atom could be defined:
(defun myAtom (x) (not (consp x)))

•Remember, nil is both an atom and a list.

UMBC CMSC 331. 8

Equality
•Each time you call cons, Lisp allocates a new

piece of memory with room for two pointers.
•So if we call cons twice with the same arguments,

we get back two values that look the same, but are
in fact distinct objects:
[17]> (setf l1 (cons 'a nil) l2 (cons 'a nil))
(A)
[18]> (eql l1 l2)
NIL
[19]> (equal l1 l2)
T
[20]> (and (eql (car l1)(car l2))(eql (cdr l1)(cdr l2)))
T

11/30/2000

UMBC CMSC 331. 9

Equal

•We also need to be able to ask whether two lists
have the same elements.

•CL provides an equality predicate for this, equal.
•eql returns true only if its arguments are the same

object,
•equal, more or less, returns true if its arguments

would print the same.
[21]> (equal l1 l2)
T

Note: if x and y are eq, they are also equal.

UMBC CMSC 331. 10

equal

defun equal (x y)
; this is how equal could be defined
(cond ((numberp x) (= x y))

((atom x) (eq x y))
((atom y) nil)
((equal (car x) (car y))
(equal (cdr x) (cdr y)))))

UMBC CMSC 331. 11

Function agrguments

•Defun allows one to define functions which
– Take optional arguments
– Take arbitrarily many arguments
– Take keyword arguments

(defun f (x & optional y (z 100) &rest therest)
(list x y z therest))

(f 1) => (1 nil 100 nil)
(f 1 2 3) = (1 2 3 nil)
(f 1 2 3 4 5 6 7) => (1 2 3 (4 5 6 7))

UMBC CMSC 331. 12

Does Lisp have pointers?

•One of the secrets to understanding Lisp is to
realize that variables have values in the same way
that lists have elements.

•As conses have pointers to their elements,
variables have pointers to their values.

•What happens, for example, when we set two
variables to the same list:
> (setf x ‘(a b c))
(A B C)
> (setf y x)
(A B C)

11/30/2000

UMBC CMSC 331. 13

•The location in memory associated with the
variable x does not contain the list itself, but
a pointer to it.

•When we assign the same value to y, Lisp
copies the pointer, not the list.

•Therefore, what would the value of
> (eql x y)
be, T or NIL?

UMBC CMSC 331. 14

Building Lists

•The function copy-list takes a list and returns
a copy of it.

•The new list will have the same elements,
but contained in new conses.

> (setf x ‘(a b c)
y (copy-list x))

(A B C)
•Spend a few minutes to draw a box diagram

of x and y to show where the pointers point.

UMBC CMSC 331. 15

Copy-list

Copy-list is a built in function but could be
defined like the following

(defun copy-list (s)
(if (atom s)

s
(cons (copy-list (car s))

(copy-list (cdr s)))))
There is also a copy-tree that makes a copy of

the entire s-expression.
UMBC CMSC 331. 16

Append

•The Common Lisp function append returns the
concatenation of any number of lists:

> (append ‘(a b) ‘(c d) ‘(e))
(A B C D E)

•Append copies all the arguments except the last.
–If it didn’t copy all but the last argument, then it

would have to modify the lists passed as arguments.
Such side effects are very undesirable, especially in
functional languages.

11/30/2000

UMBC CMSC 331. 17

append

•The two argument version of append could
have been defined like this.

(defun append2 (s1 s2)
(if (null s1)

s2
(cons (car s1) (append2 (cdr s1) s2))))

UMBC CMSC 331. 18

List access functions

•To find the element at a given position in a
list we call the function nth.

> (nth 0 ‘(a b c))
A
•and to find the nth cdr, we call nthcdr.
> (nthcdr 2 ‘(a b c))
(C)
•Both nth and nthcdr are zero indexed.

UMBC CMSC 331. 19

nth and nthcdr
(defun nth (n l)

(cond ((null l) nil)
((= n 0) (car l))
(t (nth (- n 1) (cdr l)))))

(defun nthcdr (n l)
(cond ((null l) nil)

((= n 0) (cdr l))
(t (nthcdr (- n 1) (cdr l)))))

UMBC CMSC 331. 20

Accessing lists

•The function last returns the last cons in a list.
> (defun last (l)

(cond ((null l) nil)
((null (cdr l)) l)
(t (last (cdr l)))))

last
> (last ‘(a b c))
(C)

•We also have: first, second ... tenth, and CxR,
where x is a string of up to four as or ds.
– E.g., cadr, caddr, cddr, cdadr, …

11/30/2000

UMBC CMSC 331. 21

Mapping functions
•Common Lisp provides several mapping functions.
•Mapcar is the most frequently used.
•It takes a function and one or more lists, and returns

the result of applying the function to elements taken
from each list, until one of the lists runs out:

> (mapcar #'abs '(3 -4 2 -5 -6))
(3 4 2 5 6)
> (mapcar #'cons '(a b c) '(1 2 3))
((a . 1) (b . 2) (c . 3))
> (mapcar #’(lambda (x) (+ x 10)) ‘(1 2 3))
(11 12 13)
> (mapcar #’list ‘(a b c) ‘(1 2 3 4))
((A 1) (B 2) (C 3))

UMBC CMSC 331. 22

Maplist
• The related function maplist takes the same arguments, but

calls the function on successive cdrs of the lists:
> (maplist #’(lambda (x) x) ‘(a b c))
((A B C) (B C) (C))
> (maplist #'(lambda (x) (cons 'foo x)) '(a b c d))
((foo a b c d) (foo b c d) (foo c d) (foo d))
> (maplist #'(lambda (x) (if (member (car x) (cdr x)) 0 1)))

'(a b a c d b c))
(0 0 1 0 1 1 1)

• There is also mapcan, mapc, and mapl. Use the on-line
Common Lisp the Language to discover what these
mapping functions do.

UMBC CMSC 331. 23

Member
•Member returns true, but instead of simply

returning t, its returns the part of the list
beginning with the object it was looking for.
> (member ‘b ‘(a b c))
(B C)

•By default, member compares objects using
eql.
–You can override this behavior by employing a

keyword argument.

UMBC CMSC 331. 24

Keyword arguments

•An example of a keyword argument is :test.
•If we pass some function as the :test argument in a call

to member, than that function will be used to test for
equality instead of eql.
> (member ‘(a) ‘((a) (z)) :test #’equal)
((A) (Z))

•Keyword arguments are always optional.
•Another of member’s keyword arguments is :key,

allowing one to specify a function to be applied to
each element before comparison:
> (member ‘a ‘((a b) (c d)) :key #’car)
((A B) (C D))

11/30/2000

UMBC CMSC 331. 25

How member could be defined

(defun member (s list &key (test #’eql)
(key #’(lambda (x) x))

(cond ((atom list) nil)
((funcall test s (funcall key (car list))) list)
(t (member s (cdr list)))))

In general
–a function can be defined to take any number of

keyword arguments
–Each can have an associated default value
–The default default is NIL
–Keyword parameters have to come “last” and

they key names preceded by a :
UMBC CMSC 331. 26

Member-if
•If we want to find an element satisfying an

arbitrary predicate we use the function
member-if:
> (member-if #’oddp ‘(2 3 4))
(3 4)

Which could be defined like:
(defun member-if (f l)

(cond ((null nil) nil)
((funcall f (car l)) l)
(t (member-if f (cdr l)))))

UMBC CMSC 331. 27

adjoin
•The function adjoin is like a conditional

cons.
•It takes an object and a list, and conses the

object onto the list only if it is not already a
member:

> (adjoin ‘b ‘(a b c))
(A B C)
> (adjoin ‘z ‘(a b c))
(Z A B C)

UMBC CMSC 331. 28

Sets

•CL has the functions, union, intersection,
and set-difference for performing set
operations on lists.

•These functions expect exactly two lists and
also the same keyword arguments as
member.

•Remember, there is no notion of ordering in
a set. These functions won’t necessarily
preserve the order of the two lists.

11/30/2000

UMBC CMSC 331. 29

Set Union Example
Can you guess the algorithm used to
compute union from this example?
> (setf l1 '(d a c b) l2 '(c 4 2 1 3 d))
(C 4 2 1 3 D)
> (union l1 l2)
(A B C 4 2 1 3 D)
> l1
(D A C B)
> l2
(C 4 2 1 3 D)

UMBC CMSC 331. 30

Sort
•Common Lisp has a built in function called

sort.
•It takes a sequence and a comparison

function of two arguments, and returns a
sequence with the same elements, sorted
according to the function:
> (sort ‘(0 2 1 3 8) #’>)
(8 3 2 1 0)

•Sort is destructive!!
–What can you do if you don’t want your list

modified?

UMBC CMSC 331. 31

Every and Some
•every and some take a predicate and one or more

sequences
•When given just one sequence, they test whether

the elements satisfy the predicate:
> (every #’oddp ‘(1 3 5))
T
> (some #’evenp ‘(1 2 3))
T

•If given >1 sequences, the predicate must take as
many arguments as there are sequences, and
arguments are drawn one at a time from them:
> (every #’> ‘(1 3 5) ‘(0 2 4))
T

UMBC CMSC 331. 32

Push and Pop

•The representation of lists as conses makes it
natural to use them as pushdown stacks.

•This is done so often that CL provides two
macros for the purpose, push, and pop.

•Both are defined in terms of setf.
(push obj lst)

is the same as
(setf lst (cons obj lst)

11/30/2000

UMBC CMSC 331. 33

Push and pop

(defmacro push (s var)
`(setf ,var (cons ,s ,var)))

(defmacro pop (var)
`(let ((temp (car ,var)))

(setf ,var (cdr ,var))
temp))

UMBC CMSC 331. 34

Dotted Lists
•The kind of lists that can be built by calling list are

more precisely known as proper lists.
A proper list is either nil, or a cons whose cdr is a proper list.

•However, conses are not just for building lists --
whenever you need a structure with two fields you
can use a cons.

•You will be able to use car to refer to the first field
and cdr to refer to the second.
> (setf pair (cons ‘a ‘b))

(A . B)
•Because this cons is not a proper list, it is

displayed in dot notation.
In dot notation the car and cdr of each cons are shown separated by a

period.

UMBC CMSC 331. 35

•A cons that isn’t a proper list is called a
dotted list.

•However, remember that a dotted list isn’t
really a list at all.

•It is a just a two part data structure.

a b

(A . B)

UMBC CMSC 331. 36

Assoc-lists
•It is natural to use conses to represent

mappings.
•A list of conses is called an association list otr

assoc-list or alist.
•Such a list could represent a set of translations,

for example:
> (setf languages ‘((lisp . easy) (C . hard)

(Pascal . good) (Ada . bad)))

11/30/2000

UMBC CMSC 331. 37

•Assoc-lists are slow, but convenient when engaged
in rapid prototyping.

•Common Lisp has a built in function, assoc, for
retrieving the pair associated with a given key:
> (assoc ‘C languages)
(C . HARD)
> (assoc ‘Smalltalk languages)
NIL

•Like member, assoc takes keyword arguments,
including :test and :key.

•Most uses of alists have been replaced by hashtables

UMBC CMSC 331. 38

assoc

•Here’s how assoc (w/o key word arguments)
could be defined:

(defun assoc (key alist)
(cond ((null alist) nil)

((eql key (caar alist)) (car alist))
(t (assoc key (cdr alist)))))

