
UMBC CMSC 331 Java

JAVA JAVA
BASICSBASICS

IIII
2UMBC CMSC 331 Java

Example: FIFO

•To show how simple data structures are built
without pointers, we’ll build a doubly-linked list
–ListItemclass has some user data
–first refers to that ListItemobject at the front of

the queue
–last refers to the object at the end of the queue, i.e.

most recently added

public class ListItem { // In file ListItem.java
public Object x; // N.B. a heterogeneous queue
public ListItem previous;
public ListItem next;

// Constructor operation takes initial value
public ListItem(String val) {

// this refers to “current” object
this.x = val;
this.previous = this.next = null;

}

public boolean equals(ListItem c) {
// two ListItems are equal if their string values
// are equal and they point to the same objects
return (x.equals(c.x) && (previous == c.previous) &&

(next == c.next));
}

public void printItem() {
System.out.println(x);

}
}

import java.applet.*; // overview of fifo.java

public class fifo extends Applet {
private int count = 0;
public ListItem first = null; // first is the next item to be removed
public ListItem last = null; // last is the item most recently added

// Called to initialize and test the applet. More detail on next page.
public void init() {
System.out.println("isEmpty returns "+isEmpty());
putQueue("node 1");
...
getQueue().printItem();
...

}

// See if the queue is empty
public boolean isEmpty() { ... }

// Add an item to the queue
public void putQueue(String value) { ... }

// Get the first item off the front of the queue
public ListItem getQueue() { ... }

}

// Called to initialize and test the applet.
public void init() {

System.out.println("isEmpty returns "+isEmpty());
putQueue("node 1");
System.out.println("First node is "); first.printItem();
System.out.println("Last node is "); last.printItem();

putQueue("node 2");
System.out.println("First node is "); first.printItem();
System.out.println("Last node is "); last.printItem();

getQueue().printItem();
System.out.println("First node is "); first.printItem();
System.out.println("Last node is "); last.printItem();

getQueue().printItem();
System.out.println("isEmpty returns "+isEmpty());

}

// See if the queue is empty
public boolean isEmpty() {

return (count == 0);
}

// Add an item to the queue
public void putQueue(String value) {

ListItem newItem = new ListItem(value);

if (isEmpty()) { // Special case of empty queue
first = last = newItem;

} else {
// next is the next item in the queue
// previous is the item (if any) that was in the
// queue right ahead of this (current) item
last.next = newItem;
newItem.previous = last;
last = newItem;

}
count++;

}

// Get the first item off the front of the queue
public ListItem getQueue() {

ListItem firstItem = first;

// Make sure the queue isn't empty
if (isEmpty()) {
System.out.println("Called getQueue on an empty queue");

} else {
this.first = firstItem.next;
// Did we just remove the only item in the queue?
if (first == null) {
last = null;

} else {
first.previous = null;

}
count--;

}
return firstItem;
}

8UMBC CMSC 331 Java

Programming by Contract
• A paradigm first introduced by Bertrand Meyer, the creator

of the OO programming language Eiffel.
• Eiffel has built-in support for programming by contract, but

most of the concepts can be used in any language.
• Idea: create a contract between the software developer

(supplier) and software user (consumer)
– Methods should start with a precondition that must be satisfied by

the consumer of the routine.
– And end with postconditions which the supplier guarantees to be

true (if and only if the preconditions were met).
– Each class has an invariant which must be satisfied after any

changes to the object represented by the class, I.e., the invariant
guarantees the object is in a valid state.

• Benefits: a good way to document requirements that can
also be checked by the program. Saves lots of debugging.

9UMBC CMSC 331 Java

Programming by Contract

•Note that the integer variable count, and first
and last (both of type ListItem, are redundant
in that
– first and last are null iff count == 0
– first == last , but both not null iff count == 1
– otherwise first != last iff count > 1

•Java has no assert macro, but we can test and throw
an ex ception.

// See if the queue is empty
// Check consistency of count, first and last
// Note that exceptions are first-class objects

class CorruptFifoException extends Exception;
...
public boolean isEmpty() {
if (count == 0) {
if (first == null && last == null) {
return (true);

} else {
throw new

CorruptFifoException(“first and last should be null”);
}

} else { // count != 0
...

}
}

11UMBC CMSC 331 Java

Single Inheritance, but

•A class may ex tend only one class, but it may
implement many others

•A subclass inherits the variables and methods of its
superclass(es), but may override them

•Overrides the methods defined in the class(es) it
implements, as in upcoming thread ex ample

12UMBC CMSC 331 Java

Classes and Interfaces

•The methods of an abstract class are
implemented elsewhere

•A final class cannot be ex tended
•Instances of a synchronizableclass can be

arguments of a synchronize block
– Which means that access to “critical sections” is

restricted

13UMBC CMSC 331 Java

Interfaces
• Java does not allow “multiple inheritance” because it

introduces problems as well as benefits. Fortunately,
• Java allows you to impose requirements on a class from

multiple class-like interfaces.
• An interface is like an abstract class in that it can hold

abstract method definitions that force other classes to
implement ordinary methods.

• But it is also different:
– An interface does NOT have instance variables (but it

can have constants)
– All methods in an interface are abstract (they each have a

name, parameters, and a return type, but no
implementation)

– All methods in an interface are automatically public.

14UMBC CMSC 331 Java

Classes vs. Interfaces
•A class definition that implements an interface must

define all the methods specified in that interface. In
this respect, an interface is like an abstract class.

•An interface differs from an abstract class, however,
in several respects:

•An interface only imposes definition requirements;
interfaces do not supply definitions.

•A class ex tends ex actly one superclass; a class can
implement an unlimited number of interfaces.

•Thus, the purpose of the interface is strictly to impose
requirements via its abstract methods; there are no
method implementations:

15UMBC CMSC 331 Java

Interfaces

•Interfaces provide no mechanism for enforcing
method specifications, other than method signatures
–you are free to deposit descriptive comments in an

interface, however.
•Interfaces are ex cellent places for descriptive

comments for two reasons:
–Interfaces, unlike class definitions, are free of

clutter from implementing code.
–Programmers look to interfaces for method and

class documentation.

16UMBC CMSC 331 Java

Interfaces

•The interface mechanism is an enormously
important aid to good programming practice.

•Interfaces allow you to shift to the Java compiler a
requirement-managing responsibility
– that otherwise would engage your own, human

attention.
– Interfaces encourage you to document your

classes by acting, by convention, as
documentation centers.

17UMBC CMSC 331 Java

Interfaces Example
•java.lang defines a Comparable interface as:
public interface Comparable {int
compareTo(Object other);} // no
implementation

•If you want an interface to impose requirements on a
particular class, don’t extend it; instead implement it:
public class someClassName implements I1, I2 { … }

public class Movie3 extends Attraction implements
Comparable {
public int compareTo (Object otherMovie)
{ Movie3 other = (Movie3) otherMovie;
if (rating()< other. rating()) return -1;

else if (rating() > other. rating())
return 1;

else return 0; } } 18UMBC CMSC 331 Java

Exceptions
•If an error does occur, that error is said to be

ex ceptional behavior that throws an exception.
•Whenever an ex pression has the potential to throw

an ex ception, you can embed that ex pression in a
try–catch statement, in which you specify ex plicitly
what Java is to do when an ex ception actually is
thrown.

•Exceptions are objects in their own right
– They can be generated, caught and handled under

program control
– Examples: IOException, ArithmeticException, etc.

19UMBC CMSC 331 Java

try/catch/finally

•Associates a set of statements with one or more
ex ceptions and some handling code

try {
Thread.sleep(200);

}
catch(InterruptedException e){
System.out.println(e);

}
finally {
System.out.println(“Wakeup”);

}

20UMBC CMSC 331 Java

Exceptions

•Java will “throw an ex ception” when unusual
conditions arise during ex ecution of programs, e.g.,
– E.g., Attempt to divide an integer by zero

•To handle the ex ception, use the following:
try {statement with potential to throw exception}
catch (exception-class-name parameter)

{exception-handling-code }

•To catch I/O ex ceptions, use:
– FileNotFoundException or IOException class.

21UMBC CMSC 331 Java

Exceptions

•Suppose, for ex ample, that you want to open a file
for reading using a FileInputStream instance.

•You can acknowledge that the attempt may throw
an ex ception by embedding the reading ex pressions
in a block following the try keyword.

•Java stops ex ecuting statements in the try block as
soon as an ex ception is thrown:
try {
... < An attempt to attach a stream to a file occurs here

}

22UMBC CMSC 331 Java

Exceptions

•You specify what to do in the event that the
ex ception is an instance of the IOException class
by writing the keyword catch, followed by a
parameter typed by IOException, surrounded by
parentheses, followed by another block:

catch (IOException e) {
...

}

23UMBC CMSC 331 Java

Exceptions

• To shut a program down, use System.exit(0);
• To have a block of statements executed after a try (whether

or not an exception was thrown) use:
finally { clean-up statements }

• You can create (and throw) your own exceptions, e.g.,
public class StrangeNewException extends Exception { }
throw (new StrangeNewException ())
catch (StrangeNewException e) { … }

• Alternative method to handle exceptions:
public static void f(params) throws Exception-
class { … }

