* JAVA
BASICS

Example: FIFO

« To show how sinple data structures are built
without pointers, we' Il build a doubly-linked list
—Li st | t emclass has some user data
—first referstothat Li st |t emobject at the front of

the queue
—1 ast refers to the object at the end of the queue, i.e.
most recently added
UMBC CMSC 331 Java UMBC CMSC 231 Java 2
public class Listltem{ /Il InfilelListltemjava inport java.applet.*; 11 overview offifo.java

public Object x; /1 N.B. a heterogeneous queue
public Listltemprevious;

public Listltemnext;

/1 Constructor operation takes initial value
public ListltenfString val) {
Il this refers to “current” object
this.x =val;
this.previous = this.next = null;

}

public bool ean equal s(Listltemc) {
// two Listltenms are equal if their string values
/1 are equal and they point to the same objects
return (x.equal s(c.x) && (previous == c.previous) &&
(next == c.next));
}

public void printiten{) {
Systemout.println(x);
}
}

public class fifo extends Applet {
private int count = 0;
public Listltemfirst = null; /1 first is the next itemto be renove
public Listltemlast = null; /1 last is the itemnost recently adde

/1 Called to initialize and test the applet. More detail on ext page.
public void init() {

System out.println("i sEnpty returns "+ sEnpty());

put Queue(" node 1");

QéiQJeue().pr\ntlten(l);

}
/1 See if the queue is enpty
public booleanisEnpty() { ... }
/1 Add an itemto the queue
public void put Queue(String value) { ... }
/Il Get the first itemoff the front of the queue
public Listltem getQueug) { ... }
}

I/ Called to initialize and test the applet.
public void init() {
Systemout.println("i sSEnpty returns "+ sEnpty());
put Queue(" node 1");
Systemout.printIn("First node is "); first.printitenf);
Systemout.println("Last node is "); last.printltenf);

put Queue(" node 2");
Systemout.printIn("First node is "); first.printitenf);
Systemout.println("Last node is "); last.printltenf);

get Queue().printiteng);
Systemout.printIn("First node is "); first.printitenf);
Systemout.println("Last node is "); last.printltenf);

get Queue().printiteng);
Systemout.println("i sEnpty returns "+ sEnpty());

/1l See if the queue is enpty
public bool eanisEnmpty() {
return (count == 0);

}

/1 Add an itemto the queue
public void put Queue(String value) {

Listltem newl tem= new Listltenfval ue);

if (isEmpty()) { /1 Special case of enpty queue
first = last = newitem
} else {
/1 next is the next itemin the queue
Il previous is the item (if any) that was in the
/1 queue right ahead of this (current) item
| ast.next = newtem
newl temprevious = |ast;
last = newtem

count ++;

Il Get the first itemoff the front of the queue
public Listltem get Queug() {

Listltemfirstitem= first;

/1 Make sure the queue isn't enpty
it (isEmpty()) {

Systemout.println("Called getQueue on an enpty queue");

} else {
this.first =firstltemnext;
// Did we just renpve the only itemin the queue?
if (first == null) {
last = null;
} else {
first.previous = null;
}
count--;
}
return firstlitem

}

Programming by Contract

* A paradigmfirst introduced by Bertrand Meyer, the creator
of the OO programming language Effel.

« Hffel has built-in support for programming by contract, but
nost of the concepts can be used in any language.

« |dea: create a contract between the software developer
(supplier) and software user (consumer)

— Methods should start with a precondition that must be satisfied by
the consurrer of the routine.

— And end with postconditions which the supplier guarantees to be
true (if and only if the preconditions were met).

— Each class has an invariant which must be satisfied after any
changes to the object represented by the class, I.e., the invariant
guarantees the object is in avalid state.

 Benefits: agood way to document requirements that can
also be checked by the program Saves lots of debugging.

UMBC CMSC 331 Java.

Programming by Contract

« Note that the integer variable count ,and f i r st
and| ast (both of typeLi st | t emare redundant
in that

—first and last are null iff count ==
—first ==last , but both not null iff count ==
—otherwise first != last iff count > 1

« Java has no assert macro, but we can test and throw

an exception.

UMBC CMSC 331 Java.

/1l See if the queue is enpty
I/ Check consistency of count, first and |ast
/1 Note that exceptions are firstclass objects

class Corrupt Fi foException extends Exception;

public bool eanisEnmpty() {
if (count == 0) {
if (first == null && last == null) {
return (true);
} else {
throw new
Corrupt Fi foException“first and | ast should be null");

} else { Il count !'=0

}
}

Single Inheritance, but

« A class may extend only one class, but it may
implement many others

* A subclass inherits the variables and methods of its
superclass(es), but may override them

« Overrides the methods defined in the class(es) it
implements, as in upcoming thread exarmple

UMBC CMSC 331 Java.

Classes and Interfaces

« The methods of an abst r act class are
implemented elsewhere

«Afinal classcannot be extended

« Instances of asynchr oni zabl e class can be
arguments of a synchronize block

—Which means that access to “ critica sections” is
restricted

UMBC OMSC 331 Jva 12

Interfaces

« Javadoes not alow “ multiple inheritance” because it
introduces problems as well as benefits. Fortunately,

 Java allows you to impose requirements on a class from
multiple class-like interfaces.

« Aninterfaceis like an abstract class in that it can hold
abstract method definitions that force other classes to
implement ordinary methods.

« But it is also different:

—An interface does NOT have instance variables (but it
can have constants)

— All methods in an interface are abstract (they each have a
name, parameters, and areturn type, but no
implementation)

— All methods in an interface are autometically public.

UMBC OMSC 331 Jva 13

Classes vs. Interfaces

« A class definition that implements an interface must
define all the methods specified in that interface. In
this respect, an interface is like an abstract class.

* An interface differs from an abstract class, however,
in several respects:

« An interface only imposes definition requirements;
interfaces do not supply definitions.

« A class extends exactly one superclass; aclass can
implement an unlimited number of interfaces.

« Thus, the purpose of the interface is strictly to impose
requirements via its abstract methods; there are no
method implementations:

UMBC CMSC 331 Java. 14

Interfaces

« Interfaces provide no mechanismfor enforcing
method specifications, other than method signatures

—you are free to deposit descriptive comments in an
interface, however.

« Interfaces are excellent places for descriptive
conmments for two reasons:

—Interfaces, unlike class definitions, are free of
clutter from implementing code.

—Programmers look to interfaces for method and
class documentation.

UMBC CMSC 331 Java. 15

Interfaces

« The interface mechanismis an enormously
important aid to good programming practice.
« Interfaces allow you to shift to the Java compiler a
requirement-managing responsibility
— that otherwise would engage your own, human
attention.
— Interfaces encourage you to document your
classes by acting, by convention, as
documentation centers.

UMBC OMSC 331 Jva 16

Interfaces Example

« javalang defines a Comparable interface as:
public interface Conparable {nt
conpar eTo(Qoj ect other);} // no
i mpl ement ati on

« If you want an interface to impose requirements on a
particular class, don't extend it; instead implement it:

public class soneCl assName inplenents 11, 12 { ..}

public class Mvie3 extends Attraction inplenments
Conpar abl e {

public int conpareTo (Object otherMvie)
{ Movie3 other = (Mvie3) ot herMvi e

Exceptions

« |f an error does occur, that error is said to be
exceptional behavior that throws an exception.

* Whenever an expression has the potential to throw
an exception, you can embed that expression in a
try—catch statement, in which you specify explicitly
what Javais to do when an exception actually is
thrown.

« Exceptions are objects in their own right

—They can be generated, caught and handled under
program control

* Associates a set of statements with one or more
exceptions and some handling code
try {
Thr ead. sl eep(200);

catch(I nterruptedExceptione){
Systemout.println(e);
}

finally {
System out .printl n(“Wakeup”);
}

UMBC CMSC 331 Java.

 Java will “throw an exception” when unusual
conditions arise during execution of progrars, eg.,
—Eg., Attenpt to divide an integer by zero

« To handle the exception, use the following:
try {statement with potential to throw exceptioh
catch (exception-cl ass-nanme paraneter)

{exception-handl i ng-code }

« To catch I/O exceptions, use:

— FileNotFoundException or IOException class.

UMBC CMSC 331 Java.

if (rating()< other. rating()) return-1; —Examples: |OException, ArithmeticException, etc.
else if (rating() > other. rating())
return 1;
Umac QU sC L Ia else return 0; } } 17 Umac QU sC LA 18
. Exceptions
try/catch/finally P

20

Exceptions

» Suppose, for exanple, that you want to open afile
for reading using a Filel nputStream instance.

« You can acknowledge that the attermpt may throw
an exception by embedding the reading expressions
in ablock following the try keyword.

« Java stops executing statements in the try block as
S0on as an exception is thrown:

try {
. <-- An attempt to attach a streamto a file occurs here

}

UMBC CMSC 331 Java.

Exceptions

« Y ou specify what to do in the event that the
exception is an instance of the | OException class
by writing the keyword catch, followed by a
parameter typed by | OException, surrounded by
parentheses, followed by another block:

catch (IOException €) {

UMBC CMSC 331 Java.

22

Exceptions

» To shut a program down, use Systemexit(0);
» To have ablock of statements executed after atry (whether
or not an exception was thrown) use:
finally { clean-up statenents }

* You can create (and throw) your own exceptions, eg.,
public class SrangeNewEXxception extends Exception { }
throw (new StrangeNewException ())
catch (SrangeNewExceptione) { ...}

« Alternative method to handle exceptions:

public static void f(paranms) throws Exception
class { ..}

UMBC CMSC 331 Java.

