* JAVA
BASICS

Example: FIFO

« To show how sinple data structures are built
without pointers, we' Il build a doubly-linked list
—Li st | t emclass has some user data
—first referstothat Li st |t emobject at the front of

the queue
—1 ast refers to the object at the end of the queue, i.e.
most recently added
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public class Listltem{ /Il InfilelListltemjava inport java.applet.*; 11 overview offifo.java

public Object x; /1 N.B. a heterogeneous queue
public Listltemprevious;

public Listltemnext;

/1 Constructor operation takes initial value
public ListltenfString val) {
Il this refers to “current” object
this.x =val;
this.previous = this.next = null;

}

public bool ean equal s(Listltemc) {
// two Listltenms are equal if their string values
/1 are equal and they point to the same objects
return ( x.equal s(c.x) && (previous == c.previous) &&
(next == c.next) );
}

public void printiten{) {
Systemout.println(x);
}
}

public class fifo extends Applet {
private int count = 0;
public Listltemfirst = null; /1 first is the next itemto be renove
public Listltemlast = null; /1 last is the itemnost recently adde

/1 Called to initialize and test the applet. More detail on ext page.
public void init() {

System out.println("i sEnpty returns "+ sEnpty());

put Queue( " node 1");

QéiQJeue().pr\ntlten(l);

}
/1 See if the queue is enpty
public booleanisEnpty() { ... }
/1 Add an itemto the queue
public void put Queue(String value) { ... }
/Il Get the first itemoff the front of the queue
public Listltem getQueug) { ... }
}




I/ Called to initialize and test the applet.
public void init() {
Systemout.println("i sSEnpty returns "+ sEnpty());
put Queue( " node 1");
Systemout.printIn("First node is "); first.printitenf);
Systemout.println("Last node is "); last.printltenf);

put Queue( " node 2");
Systemout.printIn("First node is "); first.printitenf);
Systemout.println("Last node is "); last.printltenf);

get Queue().printiteng);
Systemout.printIn("First node is "); first.printitenf);
Systemout.println("Last node is "); last.printltenf);

get Queue().printiteng);
Systemout.println("i sEnpty returns "+ sEnpty());

/1l See if the queue is enpty
public bool eanisEnmpty() {
return (count == 0);

}

/1 Add an itemto the queue
public void put Queue(String value) {

Listltem newl tem= new Listltenfval ue);

if (isEmpty() ) { /1 Special case of enpty queue
first = last = newitem
} else {
/1 next is the next itemin the queue
Il previous is the item (if any) that was in the
/1 queue right ahead of this (current) item
| ast.next = newtem
newl temprevious = |ast;
last = newtem

count ++;

Il Get the first itemoff the front of the queue
public Listltem get Queug() {

Listltemfirstitem= first;

/1 Make sure the queue isn't enpty
it (isEmpty() ) {

Systemout.println("Called getQueue on an enpty queue");

} else {
this.first =firstltemnext;
// Did we just renpve the only itemin the queue?
if (first == null) {
last = null;
} else {
first.previous = null;
}
count--;
}
return firstlitem

}

Programming by Contract

* A paradigmfirst introduced by Bertrand Meyer, the creator
of the OO programming language Effel.

« Hffel has built-in support for programming by contract, but
nost of the concepts can be used in any language.

« |dea: create a contract between the software developer
(supplier) and software user (consumer)

— Methods should start with a precondition that must be satisfied by
the consurrer of the routine.

— And end with postconditions which the supplier guarantees to be
true (if and only if the preconditions were met).

— Each class has an invariant which must be satisfied after any
changes to the object represented by the class, I.e., the invariant
guarantees the object is in avalid state.

 Benefits: agood way to document requirements that can
also be checked by the program  Saves lots of debugging.
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Programming by Contract

« Note that the integer variable count ,and f i r st
and| ast (both of typeLi st | t emare redundant
in that

—first and last are null iff count ==
—first ==last , but both not null iff count ==
—otherwise first != last iff count > 1

« Java has no assert macro, but we can test and throw

an exception.
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/1l See if the queue is enpty
I/ Check consistency of count, first and |ast
/1 Note that exceptions are firstclass objects

class Corrupt Fi foException extends Exception;

public bool eanisEnmpty() {
if (count == 0) {
if (first == null && last == null) {
return (true);
} else {
throw new
Corrupt Fi foException“first and | ast should be null");

} else { Il count !'=0

}
}

Single Inheritance, but

« A class may extend only one class, but it may
implement many others

* A subclass inherits the variables and methods of its
superclass(es), but may override them

« Overrides the methods defined in the class(es) it
implements, as in upcoming thread exarmple
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Classes and Interfaces

« The methods of an abst r act class are
implemented elsewhere

«Afinal classcannot be extended

« Instances of asynchr oni zabl e class can be
arguments of a synchronize block

—Which means that access to “ critica sections” is
restricted
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Interfaces

« Javadoes not alow “ multiple inheritance” because it
introduces problems as well as benefits. Fortunately,

 Java allows you to impose requirements on a class from
multiple class-like interfaces.

« Aninterfaceis like an abstract class in that it can hold
abstract method definitions that force other classes to
implement ordinary methods.

« But it is also different:

—An interface does NOT have instance variables (but it
can have constants)

— All methods in an interface are abstract (they each have a
name, parameters, and areturn type, but no
implementation)

— All methods in an interface are autometically public.
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Classes vs. Interfaces

« A class definition that implements an interface must
define all the methods specified in that interface. In
this respect, an interface is like an abstract class.

* An interface differs from an abstract class, however,
in several respects:

« An interface only imposes definition requirements;
interfaces do not supply definitions.

« A class extends exactly one superclass; aclass can
implement an unlimited number of interfaces.

« Thus, the purpose of the interface is strictly to impose
requirements via its abstract methods; there are no
method implementations:
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Interfaces

« Interfaces provide no mechanismfor enforcing
method specifications, other than method signatures

—you are free to deposit descriptive comments in an
interface, however.

« Interfaces are excellent places for descriptive
conmments for two reasons:

—Interfaces, unlike class definitions, are free of
clutter from implementing code.

—Programmers look to interfaces for method and
class documentation.

UMBC CMSC 331 Java. 15

Interfaces

« The interface mechanismis an enormously
important aid to good programming practice.
« Interfaces allow you to shift to the Java compiler a
requirement-managing responsibility
— that otherwise would engage your own, human
attention.
— Interfaces encourage you to document your
classes by acting, by convention, as
documentation centers.
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Interfaces Example

« javalang defines a Comparable interface as:
public interface Conparable {nt
conpar eTo( Qoj ect other);} // no
i mpl ement ati on

« If you want an interface to impose requirements on a
particular class, don't extend it; instead implement it:

public class soneCl assName inplenents 11, 12 { ..}

public class Mvie3 extends Attraction inplenments
Conpar abl e {

public int conpareTo (Object otherMvie)
{ Movie3 other = (Mvie3) ot herMvi e

Exceptions

« |f an error does occur, that error is said to be
exceptional behavior that throws an exception.

* Whenever an expression has the potential to throw
an exception, you can embed that expression in a
try—catch statement, in which you specify explicitly
what Javais to do when an exception actually is
thrown.

« Exceptions are objects in their own right

—They can be generated, caught and handled under
program control

* Associates a set of statements with one or more
exceptions and some handling code
try {
Thr ead. sl eep(200);

catch(I nterruptedExceptione){
Systemout.println(e);
}

finally {
System out .printl n(“Wakeup”);
}

UMBC CMSC 331 Java.

 Java will “throw an exception” when unusual
conditions arise during execution of progrars, eg.,
—Eg., Attenpt to divide an integer by zero

« To handle the exception, use the following:
try {statement with potential to throw exceptioh
catch (exception-cl ass-nanme paraneter)

{exception-handl i ng-code }

« To catch I/O exceptions, use:

— FileNotFoundException or IOException class.

UMBC CMSC 331 Java.

if (rating()< other. rating()) return-1; —Examples: |OException, ArithmeticException, etc.
else if (rating() > other. rating())
return 1;
Umac QU sC L Ia else return 0; } } 17 Umac QU sC LA 18
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Exceptions

» Suppose, for exanple, that you want to open afile
for reading using a Filel nputStream instance.

« You can acknowledge that the attermpt may throw
an exception by embedding the reading expressions
in ablock following the try keyword.

« Java stops executing statements in the try block as
S0on as an exception is thrown:

try {
. <-- An attempt to attach a streamto a file occurs here

}
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Exceptions

« Y ou specify what to do in the event that the
exception is an instance of the | OException class
by writing the keyword catch, followed by a
parameter typed by | OException, surrounded by
parentheses, followed by another block:

catch (IOException €) {
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Exceptions

» To shut a program down, use Systemexit(0);
» To have ablock of statements executed after atry (whether
or not an exception was thrown) use:
finally { clean-up statenents }

* You can create (and throw) your own exceptions, eg.,
public class SrangeNewEXxception extends Exception { }
throw (new StrangeNewException () )
catch (SrangeNewExceptione) { ...}

« Alternative method to handle exceptions:

public static void f(paranms) throws Exception
class { ..}
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