
CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

1CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Functional Functional
ProgrammingProgramming

LanguagesLanguages
Chapter 14

2CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Introduction

•Functional programming
paradigm

•History
•Features and concepts
•Examples:

– Lisp
– ML

3CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Functional Programming

• The Functional Programming Paradigm is one of
the major programming paradigms.

– FP is a type of declarative programming paradigm
– Also known as applicative programming and value-oriented

programming

• Idea: everything is a function
• Based on sound theoretical frameworks (e.g., the

lambda calculus)
• Examples of FP languages

– First (and most popular) FP language: Lisp
– Other important FPs: ML, Haskell, Miranda, Scheme, Logo

4CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Functional Programming Languages
The design of the imperative languages is
based directly on the von Neumann
architecture

Efficiency is the primary concern, rather than the
suitability of the language for software
development

The design of the functional languages is
based on mathematical functions

A solid theoretical basis that is also closer to the
user, but relatively unconcerned with the
architecture of the machines on which programs
will run

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

5CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Mathematical Functions

• Def: A mathematical function is a mapping of members of one set,
called the domain set, to another set, called the range set.

• The lambda calculus is a formal mathematical system devised by
Alonzo Church to investigate functions, function application and
recursion.

• A lambda expression specifies the parameter(s) and the mapping of a
function in the following form
? ?x . x * x * x
for the function cube (x) = x * x * x

• Lambda expressions describe nameless functions
• Lambda expressions are applied to parameter(s) by placing the

parameter(s) after the expression
(? ?x . x * x * x) 3 => 3*3*3 => 27
(? ?x,y . (x-y)*(y-x)) (3,5) => (3-5)*(5-3) => -4

6CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Characteristics of Pure FPLs

Pure FP languages tend to
– Have no side-effects
– Have no assignment statements
– Often have no variables!
– Be built on a small, concise framework
– Have a simple, uniform syntax
– Be implemented via interpreters rather than

compilers
– Be mathematically easier to handle

7CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Importance of FP

• In their pure form FPLs dispense with notion of
assignment
– claim is: it's easier to program in them
– also: easier to reason about programs written in them

• FPLs encourage thinking at higher levels of abstraction
– support modifying and combining existing programs
– thus, FPL's encourage programmers to work in units larger than

statements of conventional languages: "programming in the large"

• FPLs provide a paradigm for parallel computing
– absence of assignment (or single assignment) } provide basis
– independence of evaluation order } for parallel
– ability to operate on entire data structures } functional programming

8CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Importance of FP
• FPLs are valuable in developing executable

specifications and prototype implementations
– Simple underlying semantics

» rigorous mathematical foundations
» ability to operate on entire data structures

ideal vehicle for capturing specifications

• FPLs are very useful for AI and other applications
which require extensive symbol manipulation.

• Functional Programming is tied to CS theory
– provides framework for viewing decidability questions

» (both programming and computers)
– Good introduction to Denotational Semantics

» functional in form

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

9CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Expressions
• Key purpose of functional programming: to extend the

advantages of expressions (over statements) to an entire
programming language

• Backus* has said that expressions and statements come from
two different worlds.

– expressions: (a + b) * c arithmetic
(a + b) = 0 relational

¬(a ? b) boolean

– statements: the usual assortment with assignment singled out

– assignments alter the state of a computation (ordering is important)
e.g. a:= a * i; i:= i + 1

• In contrast, ordering of expressions is not side-effecting and
therefore not order dependent (Church-Rosser property /Church
Diamond) * "Can programming be liberated from the von Neumann

style?", John Backus, Communications of the ACM, 21, 8,
pp.613-641, 1978.) 10CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Church-Rosser Theorem
• We can formally model the process of evaluating an expression as the

application of one or more reduction rules.

• E.g., lambda-calculus includes the beta-reduction rule to evaluate the
application of a lambda abstraction to an argument expression.

– A copy of the body of the lambda abstraction is made and occurrences of
the bound variable replaced by the argument.

– E.g. (? x . x+1) 4 => 4+1

• The CR theorem states that if an expression can be reduced by zero or
more reduction steps to either expression M or expression N then there
exists some other expression to which both M and N can be reduced.

• This implies that there is a unique normal form for any expression since
M and N cannot be different normal forms because the theorem says
they can be reduced to some other expression and normal forms are
irreducible by definition.

• It does not imply that a normal form is reachable, only that if reduction
terminates it will reach a unique normal form.

11CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

More Expressions
With Church-Rosser

– reasoning about expressions is easier
– order independence supports fine-grained parallelism
– Diamond property is quite useful

Referential transparency
– In a fixed context, the replacement of a subexpression by its

value is completely independent of the surrounding
expression
» having once evaluated an expression in a given context,

shouldn’t have to do it again.
– Alternative: referential transparency is the universal ability to

substitute equals for equals (useful in common subexpression
optimizations and mathematical reasoning)

12CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

FPLs address C.A.R. Hoare's
Principles of Structuring

1) Transparency of meaning
– Meaning of whole expression can be understood in terms of meanings of its

subexpressions.
2) Transparency of Purpose

– Purpose of each part consists solely of its contribution to the purpose of the whole. => No
side effects.

3) Independence of Parts
– Meaning of independent parts can be understood completely independently.
– In E + F, E can be understood independently of F.

4) Recursive Application
– Both construction and analysis of structure (e.g. expressions) can be accomplished through

recursive application of uniform rules.
5) Narrow Interfaces

– Interface between parts is clear, narrow (minimal number of inputs and outputs) and well
controlled.

6) Manifestness of Structure
– Structural relationships among parts are obvious. e.g. one expression is subexpression of

another if the first is textually embedded in the second. Expressions are unrelated if they
are not structurally related.

Hoare, Charles Antony Richard. “Hints on programming language design.”, In
SIGACT/SIGPLAN Symposium on principles of programming languages,
October 1973.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

13CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Properties of Pure Expressions

•Value is independent of evaluation order

•Expressions can be evaluated in parallel

•Referential transparency

•No side-effects (Church Rosser)

•Inputs to an expression are obvious from written form

•Effects of operation are obvious from written form
=> Meet Hoare's principles well
=> Good attributes to extend to all programming (?)

14CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

What are some FPLs?

• LISP – the first FPL, ~1958
• Pure FPLs have no side effects

– Haskell and Miranda are the two most popular examples

• Some FPLs try to be more practical and do
allow some side effects

– Lisp and it’s dialects (e.g. Scheme)
– ML (Meta Language) and SML (Standard ML)

15CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Lisp
• Defined by John McCarthy* ~1958 as a language for AI.
• Originally, LISP was a typeless language with only two data

types: atom and list
• LISP’s lists are stored internally as single-linked lists
• Lambda notation was used to specify functions.
• Function definitions, function applications, and data all have

the same form
If the list (A B C) is interpreted as data it is a simple list of three atoms,
A, B, and C but if interpreted as a function application, it means that the
function named A is applied to the two parameters, B and C.

• Example (early Lisp):
(defun fact (n) (cond ((lessp n 2) 1)(T (times n (fact (sub1 n))))))

• Common Lisp is the ANSI standard Lisp specification
* Recursive Functions of Symbolic Expressions and their Computation by Machine (Part I), John
McCarthy, CACM, April 1960. http://www-formal.stanford.edu/jmc/recursive.html

16CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Scheme

• In the mid 70’s Sussman and Steele (MIT) defined Scheme as a new
LISP-like Language

• Goal was to move Lisp back toward it’s simpler roots and incorporate
ideas which had been developed in the PL community since 1960.

– Uses only static scoping
– More uniform in treating functions as first-class objects which can be the values of

expressions and elements of lists, assigned to variables and passed as parameters.
– Includes the ability to create and manipulate closures and continuations.

» A closure is a data structure that holds an expression and an environment of
variable bindings in which it’s to be evaluated. Closures are used to represent
unevaluated expressions when implementing FPLs with lazy evaluation.

» A continuation is a data structure which represents “the rest of a computation”
• Example: (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
• Scheme has mostly been used as a language for teaching Computer

programming concepts where as Common Lisp is widely used as a
practical language.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

17CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

ML
• ML (Meta Language) is a strict, static-scoped functional

language with a Pascal-like syntax that was defined by
Robin Milner et. al. in 1973.

• It was the first language to include statically checked
polymorphic typing.
• Uses type declarations, but also does type inferencing to determine

the types of undeclared variables
• Strongly typed (whereas Scheme is essentially typeless) and has

no type coercions
• Includes exception handling and a module facility for

implementing abstract data types, garbage collection and a
formal semantics.

• Most common dialect is Standard ML (SML)
• Example:

fun cube (x : int) = x * x * x;

18CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Haskell

• Similar to ML (syntax, static scoped, strongly typed,
type inferencing)

• Different from ML and most other FPLs in that it is
purely functional -- no variables, no assignment
statements, and no side effects of any kind

• Some key features:
- Uses lazy evaluation (evaluate no subexpression

until the value is needed)
- Has “list comprehensions,” which allow it to deal

with infinite lists
• Example:

fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

19CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Some FP concepts

• A number of interesting programming language concepts
have arisen, including:

– Curried functions
– Type inferencing
– Polymorphism
– Higher-order functions
– Functional abstraction
– Lazy evaluation

20CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Curried Functions

• The logician Frege noted in 1883 that we only need
functions of one argument.

– We can replace a function f(x,y) by a new function f’(x) that when called
produces a function of another argument to compute f(x,Y).

– That is: (f'(x))(y) = f (x,y)

• Haskell Curry developed combinatorial logic which used
this idea.

• We call f’ a “curried” form of the function f.
• Two operations:

– To curry : ((a,b) -> c) -> (a -> b -> c)
– To uncurry : (a -> b -> c) -> ((a,b) -> c)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

21CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Type Inferencing
• Def: ability of the language to infer types without having programmer

provide type signatures.

• SML ex: fun min(a:real,b) = if a > b then b else a
– type of a has to be given, but then that’s sufficient to figure out the type of b and the

type of min
– What if type of a is not specified? Could be ints or bools or …

• Haskell (as with ML) guarantees type safety (if it compiles, then it’s type
safe)

– Haskell ex: eq = (a = b)
– a polymorphic function that has a return type of bool, assumes only

that its two arguments are of the same type and can have the equality
operator applied to them.

• Overuse of type inferencing in both languages is discouraged
– declarations are a design aid
– declarations are a documentation aid
– declarations are a debugging aid

22CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Polymorphism
• ML:

fun factorial (0) = 1

= | factorial (n) = n * factorial (n - 1);

–ML infers factorial is an integer function: int -> int

• Haskell:

factorial (0) = 1

factorial (n) = n * factorial (n - 1)

–Haskell infers factorial is a (numerical) function:
Num a => a -> a

23CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Polymorphism
• ML:

fun mymax(x,y) = if x > y then x else y;

–SML infers mymax is an integer function: int -> int

fun mymax(x: real ,y) = if x > y then x else y;

–SML infers mymax is real

• Haskell:

mymax(x,y) = if x > y then x else y;

–Haskell infers factorial is an Ord function

24CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Higher Order Functions
• Definitions:

– zero-order functions: data in the traditional sense.
– first-order functions: functions that operate on zero-order

functions.
– second-order functions: operate on first order

• In general, higher-order functions (HOFs) are those that can
operate on functions of any order as long as types match.
– HOFs are usually polymorphic

• Higher-order functions can take other functions as arguments and
produce functions as values.
– Applicative programming has often been considered the

application of first-order functions.
– Functional programming has been considered to include

higher-order functions: functionals.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

25CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Functional Abstraction
• Functional programming allows functional abstraction that is not supported

in imperative languages, namely the definition and use of functions that take
functions as arguments and return functions as values.
– supports higher level reasoning

– simplifies correctness proofs

• Simple examples: Map and filter in Scheme
– (map square ‘(1 2 3 4)) => (1 4 9 16)
– (filter prime (between 1 15)) => (1 2 3 5 7 11 13)

• (define (map f l)
; Map applies a function f to elements of list l returning list of the results.
(if (null? l) nil (cons (f (first l)) (map f (rest l)))))

• (define filter (f l)
; (filter f l)returns a list of those elements of l for which f is true
(if (null? L)

nil
(if (f (first l)) (cons (first l) (filter f (cdr l))) (filter f (cdr l)))))))

26CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Lazy evaluation

• An evaluation strategy in which arguments to a function are
evaluated only when needed for the computation.

• Supported by many FPLs including Scheme, Haskell and
Common Lisp.

• Very useful for dealing with very large or infinite streams
of data.

• Usually implemented using closures – data structures
containing all the information required to evaluate the
expression.

• Its opposite, eager evaluation, is the usual default in a
programming language in which arguments to a function
are always evaluated before the function is applied.

27CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Applications of Functional Languages

• Lisp is used for artificial intelligence applications
• Knowledge representation
• Machine learning
• Natural language processing
• Modeling of speech and vision

• Embedded Lisp interpreters add programmability
to some systems, such as Emacs

• Scheme is used to teach introductory programming
at many universities

• FPLs are often used where rapid prototyping is
desired.

• Pure FPLs like Haskell are useful in contexts
requiring some degree of program verification

28CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Summary: ILs vs FPLs

Imperative Languages:
– Efficient execution
– Complex semantics
– Complex syntax
– Concurrency is programmer designed

Functional Languages:
– Simple semantics
– Simple syntax
– Inefficient execution
– Programs can automatically be made concurrent

