
CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

1CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Data TypesData Types
Chapter 5

2CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Introduction
This Chapter introduces the concept of a data type
and discusses:

–Characteristics of the common primitive data
types.

–Character strings
–User defined data-types
–Design of enumerations and sub-range data

types
–Design of structured data types including

arrays, records, unions and set types.
–Pointers and heap management

3CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Data Types

•Every PL needs a variety of data types in
order to better model/match the world

•More data types makes programming easier
but too many data types might be confusing

•Which data types are most common? Which
data types are necessary? Which data types
are uncommon yet useful?

•How are data types implemented in the PL?

4CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Evolution of Data Types
FORTRAN I (1956) - INTEGER, REAL, arrays
Ada (1983) - User can create a unique type for

every category of variables in the problem space
and have the system enforce the types

Def: A descriptor is the collection of the attributes
of a variable

Design Issues for all data types:
1. What is the syntax of references to variables?
2. What operations are defined and how are they

specified?

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

5CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Primitive Data Types

These types are supported directly in the hardware of the
machine and not defined in terms of other types. E.g.:
– Integer: Short Int, Integer, Long Int (etc)
– Floating Point: Real, Double Precision

Stored in 3 parts, sign bit, exponent and mantissa (see fig 5.1
page 199)

– Decimal: BCD (1 digit per 1/2 byte)
used in business languages with a set decimal for dollars and
cents

– Boolean: (TRUE/FALSE, 1/0, T/NIL)
– Character: Using EBCDIC, ASCII, UNICODE, etc.

6CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Floating Point
•Model real numbers, but only as approximations
•Languages for scientific use support at least two

floating-point types; sometimes more
•Usually exactly like the hardware, but not always;

some languages allow accuracy specs in code e.g.
(Ada)
type SPEED is digits 7 range 0.0..1000.0;
type VOLTAGE is delta 0.1 range -12.0..24.0;

•IEEE Floating Point Standard 754
• Single precision: 32 bit representation with 1 bit sign, 8 bit

exponent, 23 bit mantissa
• Double precision: 64 bit representation with 1 bit sign, 11

bit exponent, 52 bit mantissa

7CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Decimal and Boolean
Decimal

–For business applications (money)
–Store a fixed number of decimal digits (coded)
–Advantage: accuracy
–Disadvantages: limited range, wastes memory

Boolean
–Could be implemented as bits, but often as bytes
–Advantage: readability

8CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Character Strings
•Characters are another primitive data type

which map easily into integers.
•We’ve evolved through several basic

encodings for characters:
– 50s – 70s: EBCDIC (Extended Binary Coded Decimal

Interchange Code) -- Used five bits to represent characters
– 70s – 00s: ASCII (American Standard Code for Information

Interchange) -- Uses seven bits to represent 128 possible
“characters”

– 00s - : Unicode -- Uses 16 bits to represent ~64K different
characters
Needed as computers become less eurocentric to represent

the full range of non-roman alphabets and pictographs.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

9CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Character String Types
Values are sequences of characters
Design issues:

•Is it a primitive type or just a special kind of
array?

•Is the length of objects static or dynamic?

Typical String Operations:
•Assignment
•Comparison (=, >, etc.)
•Catenation
•Substring reference
•Pattern matching

10CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Character Strings
• Should a string be a primitive or be definable as an array

of chars?
–In Pascal, C/C++, Ada, strings are not primitives but

can “act” as primitives if specified as “packed” arrays
(i.e. direct assignment, <, =, > comparisons, etc...).

–In Java, strings are objects and have methods to
support string operations (e.g. length, <, >)

• Should strings have static or dynamic length?
• Can be accessed using indices (like arrays)
• Operations: comparison, assign, input/output, length,

concatenation, append, substr, etc...

11CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

String examples
• SNOBOL - had elaborate pattern matching
• FORTRAN 77/90, COBOL, Ada - static length strings
• PL/I, Pascal - variable length with static fixed size

strings
• SNOBOL, LISP - dynamic lengths
• Java - objects which are immutable (to change the

length, you have to create a new string object) and + is
the only overloaded operator for string (concat), no
overloading for <, >, etc

12CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

String Examples
•Some languages, e.g. Snobol, Perl and Tcl, have

extensive built-in support for strings and operations
on strings.

•SNOBOL4 (a string manipulation language)
–Primitive data type with many operations,

including elaborate pattern matching
• Perl

–Patterns are defined in terms of regular expressions
providing a very powerful facility!
/[A-Za-z][A-Za-z\d]+/

•Java - String class (not arrays of char)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

13CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

String Length Options

Static - FORTRAN 77, Ada, COBOL
e.g. (FORTRAN 90)
CHARACTER (LEN = 15) NAME;

Limited Dynamic Length - C and C++ actual
length is indicated by a null character

Dynamic - SNOBOL4, Perl

14CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Character String Types
Evaluation

•Aid to writability
•As a primitive type with static length, they are

inexpensive to provide -- why not have them?
•Dynamic length is nice, but is it worth the expense?

Implementation:
•Static length - compile-time descriptor
•Limited dynamic length - may need a run-time

descriptor for length (but not in C and C++)
•Dynamic length - need run-time descriptor;

allocation/deallocation is the biggest
implementation problem

15CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

User-Defined Ordinal Types
•An ordinal type is one in which the range of

possible values can be easily associated with the set
of positive integers

•Enumeration Types -the user enumerates all of
the possible values, which are given symbolic
constants

•Can be used in For-loops, case statements, etc.
•Operations on ordinals include PRED, SUCC,

ORD
•Usually cannot be I/O easily
•Mainly used for abstraction/readability

16CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Examples
Pascal - cannot reuse constants; they can be used for

array subscripts, for variables, case selectors; NO
input or output; can be compared

Ada - constants can be reused (overloaded literals);
disambiguate with context or type_name ‘ (one of
them); can be used as in Pascal; can be input and
output

C and C++ - like Pascal, except they can be input
and output as integers

Java - does not include an enumeration type

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

17CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Ada Example

• Some PLs allow a symbolic constant to appear in more
than 1 type, Standard Pascal does not

• Ada is one of the few languages that allowed a symbol to
name a value in more than one enumerated type.
Type letters is (‘A’, ‘B’, ‘C’, ... ‘Z’);
Type vowls is (‘A’, ‘E’, ‘I’, ‘O’, ‘U’);

• The following is ambiguous:
For letter in ‘A’ .. ‘O’ loop

• So Ada allows (requires) one to say:
For letter in vowels(‘A’)..vowels(‘U’) loop

18CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pascal Example
Pascal was one of the first widely used language to have

good facilities for enumerated data types.
Type colorstype = (red, orange, yellow,
green, blue, indigo, violet);

Var skinColor : colortype;
...
skinColor := blue;
...
If skinColor > green ...
...
For skinColor := red to violet do ...;
...

19CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Subrange Type

•Limits a large type to a contiguous subsequence of
values within the larger range, providing additional
flexibility in programming and readability/abstraction

•Available in C/C++, Ada, Pascal, Modula-2
•Pascal Example

Type upperCase =‘A’..‘Z’; lowerCase=‘a’..’z’; index =1..100;
•Ada Example

– Subtypes are not new types, just constrained existing types (so
they are compatible); can be used as in Pascal, plus case
constants, e.g.

subtype POS_TYPE is INTEGER range 0 ..INTEGER'LAST;

20CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Ordinal Types Implementation

•Implementation is straightforward:
enumeration types are implemented as
non-negative integers

•Subrange types are the parent types
with code inserted (by the compiler) to
restrict assignments to subrange
variables

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

21CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Evaluation of Enumeration Types
•Aid to efficiency – e.g., compiler can

select and use a compact efficient
representation (e.g., small integers)

•Aid to readability -- e.g. no need to code
a color as a number

•Aid to maintainability – e.g., adding a
new color doesn’t require updating hard-
coded constants.

•Aid to reliability -- e.g. compiler can
check operations and ranges of value.

22CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Types
•An array is an aggregate of homogeneous data

elements in which an individual element is
identified by its position in the aggregate, relative
to the first element.

•Design Issues include:
– What types are legal for subscripts?
– When are subscript ranges bound?
– When does array allocation take place?
– How many subscripts are allowed?
– Can arrays be initialized at allocation time?
– Are array slices allowed?

23CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Indices
• An index maps into the array to find the specific

element desired
map(arrayName, indexValue) ? array element

• Usually placed inside of [] (Pascal, Modula-2, C,
Java) or () (FORTRAN, PL/I, Ada) marks

– if the same marks are used for parameters then this
weakens readability and can introduce ambiguity

• 2 types in an array definition
– type of value being stored in array cells
– type of index used

• Lower bound - implicit in C, Java and early
FORTRAN

24CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Subscript Bindings and Array Categories
Subscript Types:

FORTRAN, C - int only
Pascal - any ordinal type (int, boolean, char, enum)
Ada - int or enum (includes boolean and char)
Java - integer types only

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

25CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Categories
Four Categories of Arrays based on subscript binding and

binding to storage
1. Static - range of subscripts and storage bindings are static

– e.g. FORTRAN 77, some arrays in Ada
– Advantage: execution efficiency (no allocation or

deallocation)
2. Fixed stack dynamic - range of subscripts is statically

bound, but storage is bound at elaboration time.
– e.g. Pascal locals and C locals that are not static
– Advantage: space efficiency

26CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Categories (continued)
3. Stack-dynamic - range and storage are dynamic, but fixed

from then on for the variable’s lifetime
e.g. Ada declare blocks

Declare
STUFF : array (1..N) of FLOAT;
begin
...
end;

Advantage: flexibility - size need not be known until the array
is about to be used

27CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Categories
4. Heap-dynamic - subscript range and storage bindings are dynamic and

not fixed e.g. (FORTRAN 90)

INTEGER, ALLOCATABLE, ARRAY (:,:) :: MAT
(Declares MAT to be a dynamic 2-dim array)

ALLOCATE (MAT (10, NUMBER_OF_COLS))
(Allocates MAT to have 10 rows and NUMBER_OF_COLS columns)

DEALLOCATE MAT
(Deallocates MAT’s storage)

- In APL & Perl, arrays grow and shrink as needed
- In Java, all arrays are objects (heap-dynamic)

28CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array dimensions

• Some languages limit the number of dimensions
that an array can have

• FORTRAN I - limited to 3 dimensions
• FORTRAN IV and onward - up to 7 dimensions
• C/C++, Java - limited to 1 but arrays can be nested

(i.e. array element is an array) allowing for any
number of dimensions

• Most other languages have no restrictions

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

29CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Initialization
• FORTRAN 77 - initialization at the time storage is allocated

INTEGER LIST(3)
Data list /0, 5, 5/

• C - length of array is implicit based on length of initialization
list
int stuff [] = {2, 4, 6, 8};
Char name [] = ‘’Maryland’’;
Char *names [] = {‘’maryland’’, ‘’virginia’’,
delaware’’};

• C/C++, Java - have optional initializations
• Ada - like C but you can specify which array elements are

assigned values (instead of assigning all values)
SCORE : array (1..14,1..2) := (1=>(24,10), 2=>(10,7),
3=>(12,30), others=>(0,0));

• Pascal, Modula-2 – don’t have array initializations (Turbo
Pascal does)

30CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Operations
• Operations that apply to an array as a unit (as

opposed to a single array element)
• Most languages have direct assignment of one

array to another (A := B) if both arrays are
equivalent

• FORTRAN: Allows array addition A+B
• Ada: Array concatenation A&B
• FORTRAN 90: library of Array ops including

matrix multiplication, transpose
• APL: includes operations for vectors and matrices

(transpose, reverse, etc...)

31CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Array Operations in Java

• In Java, arrays are objects (sometimes called
aggregate types)

• Declaration of an array may omit size as in:
– int [] array1;
– array1 is a pointer initialized to nil
– at a later point, the array may get memory allocated it as

with
– array1 = new int [100];

• Array operations other than access
(array1[2]) are through methods such as
array1.length

32CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Slices

A slice is some substructure of an array; nothing
more than a referencing mechanism

1. FORTRAN 90 Example
INTEGER MAT (1:4,1:4)
INTEGER CUBE(1:4,1:4,1:4)
MAT(1:4,1) - the first column of MAT
MAT(2,1:4) - the second row of MAT
CUBE(1:3,1:3,2:3) – 3x3x2 sub array

2. Ada Example
single-dimensioned arrays only

LIST(4..10)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

33CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Arrays
Implementation of Arrays

• Access function maps subscript expressions to an address
in the array

• Row major (by rows) or column major order (by columns)

An associative array is an unordered collection of
data elements that are indexed by an equal number
of values called keys

Design Issues:
1. What is the form of references to elements?
2. Is the size static or dynamic?

34CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Perl’s Associative Arrays

• Perl has a primitive datatype for hash tables aka “associative arrays”.
• Elements indexed not by consecutive integers but by arbitrary keys
• %ages refers to an associative array and @people to a regular array
• Note the use of { }’s for associative arrays and []’s for regular arrays

%ages = ("Bill Clinton“=>53,"Hillary“=>51, "Socks“=>"27 in cat years");
$ages{“Hillary”} = 52;b
@people=("Bill Clinton“,"Hillary“,"Socks“);
$ages{“Bill Clinton"}; # Returns 53
$people[1]; # returns “Hillary”

• keys(X), values (X) and each(X)
foreach $person (keys(%ages)) {print "I know the age of $person\n";}
foreach $age (values(%ages)){print "Somebody is $age\n";}
while (($person, $age) = each(%ages)) {print "$person is $age\n";}

35CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Records

A record is a possibly heterogeneous aggregate of
data elements in which the individual elements are
identified by names

Design Issues:
1. What is the form of references?
2. What unit operations are defined?

36CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Record Field References
• Record Definition Syntax -- COBOL uses level

numbers to show nested records; others use familiar
dot notation
field_name OF rec_name_1 OF ... OF rec_name_n
rec_name_1.rec_name_2.....rec_name_n.field_name

• Fully qualified references must include all record
names

• Elliptical references allow leaving out record
names as long as the reference is unambiguous

• With clause in Pascal and Modula2
With employee.address do

begin
street := ‘422 North Charles St.’;
city := ‘Baltimore’;
zip := 21250

end;

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

37CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Record Operations
1.Assignment

• Pascal, Ada, and C allow it if the types are identical
– In Ada, the RHS can be an aggregate constant

2. Initialization
• Allowed in Ada, using an aggregate constant

3. Comparison
• In Ada, = and /=; one operand can be an aggregate

constant
4. MOVE CORRESPONDING (Cobol)

Move all fields in the source record to fields with the same
names in the destination record

MOVE CORRESPONDING INPUT-RECORD TO OUTPUT-RECORD

38CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Records and Arrays
Comparing records and arrays

1. Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

2. Dynamic subscripts could be used with record
field access, but it would disallow type checking
and it would be much slower

39CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Union Types
A union is a type whose variables are allowed to

store different type values at different times during
execution

Design Issues for unions:

1. What kind of type checking, if any, must be
done?

2. Should unions be integrated with records?

3. Is a variant tag or discriminant required?

40CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Examples: Unions
1.FORTRAN - with EQUIVALENCE

2. Algol 68 - discriminated unions
• Use a hidden tag to maintain the current type
• Tag is implicitly set by assignment
• References are legal only in conformity clause

union (int, real) ir1;
int count;
real sum;
…
case ir1 in

(int intval): count := intval;
(real realval): sum := realval

esac
• This runtime type selection is a safe method of

accessing union objects

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

41CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pascal Union Types
Problem with Pascal’s design: type checking is

ineffective. Reasons:
User can create inconsistent unions (because the tag can be

individually assigned)

var blurb : intreal;
x : real;
blurb.tag := true; { it is an integer }
blurb.blint := 47; { ok }
blurb.tag := false; { it is a real }
x := blurb.blreal; { assigns an integer to a real }

The tag is optional! Now, only the declaration and the second
and last assignments are required to cause trouble

42CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pascal Union Types

Pascal has record variants which support both
discriminated & nondiscriminated unions, e.g.

type shape = (circle, triangle, rectangle);
colors = (red,green,blue);
figure = record

filled: boolean;
color: colors;
case form: shape of
circle: (diameter: real);
triangle: (leftside: integer; rightside: integer; angle:real);
rectangle: (side1: integer; side2: integer)
end;

43CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pascal Union Types

case myfigure.form of
circle : writeln(‘It is a circle; its diameter is’, myfigure.diameter);
triangle : begin

writeln(‘It is a triangle’);
writeln(‘ its sides are:’myfigure.leftside, myfigure.rightside);
wtiteln(‘ the angle between the sides is :’, myfigure.angle);
end;

rectangle : begin
writeln(‘It is a rectangle’);
writeln(‘ its sides are: ‘myfigure.side1, myfigure.side2)
end

end

44CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pascal Union Types

But, Pascal allowed for problems because:
– The user could explicitly set the record variant tag

myfigure.form := triangle
– The variant tag is option. We could have defined a figure as:

Type figure = record …
case shape of

circle: (diameter: real);
…

end

Pascal’s variant records introduce potential type problems,
but are also a loophole which allows you to do, for
example pointer arithmetic.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

45CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Ada Union Types

Ada only has “discriminated unions”

These are safer than union types in Pascal &
Modula2 because:

–The tag must be present
–It is impossible for the user to create an

inconsistent union (because tag cannot be
assigned by itself -- All assignments to the union
must include the tag value)

46CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Union Types

C and C++ have only free unions (no tags)
•Not part of their records
•No type checking of references

6. Java has neither records nor unions

Evaluation - potentially unsafe in most
languages (not Ada)

47CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Set Types

• A set is a type whose variables can store unordered
collections of distinct values from some ordinal type

• Design Issue:

– What is the maximum number of elements in any set
base type?

• Usually implemented as a bit vector.
– Allows for very efficient implementation of basic set

operations (e.g., membership check, intersection, union)

48CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Sets in Pascal

• No maximum size in the language definition and
implementation dependant and usually a function
of hardware word size (e.g., 64, 96, …).

• Result: Code not portable, poor writability if max
is too small

• Set operations: union (+), intersection (*),
difference (-), =, <>, superset (>=), subset (<=), in

Type colors = (red,blue,green,yellow,orange,white,black);
colorset = set of colors;
var s1, s2 : colorset;
…
s1 := [red,blue,yellow,white];
s2 := [black,blue];

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

49CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Examples

2. Modula-2 and Modula-3
•Additional operations: INCL, EXCL, /

(symmetric set difference (elements in one but not
both operands))

3. Ada - does not include sets, but defines in as set
membership operator for all enumeration types

4. Java includes a class for set operations

50CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Evaluation

• If a language does not have sets, they must be
simulated, either with enumerated types or with
arrays

• Arrays are more flexible than sets, but have
much slower operations

Implementation

• Usually stored as bit strings and use logical
operations for the set operations.

51CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pointers
A pointer type is a type in which the range of values
consists of memory addresses and a special value,
nil (or null)
Uses:

1. Addressing flexibility
2. Dynamic storage management

Design Issues:
• What is the scope and lifetime of pointer variables?
• What is the lifetime of heap-dynamic variables?
• Are pointers restricted to pointing at a particular type?
• Are pointers used for dynamic storage management,

indirect addressing, or both?
• Should a language support pointer types, reference types, or

both?
52CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Fundamental Pointer Operations

• Assignment of an address to a pointer
• References (explicit versus implicit

dereferencing)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

53CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Problems with pointers

1. Dangling pointers (dangerous)
•A pointer points to a heap-dynamic variable that

has been deallocated

•Creating one:
•Allocate a heap-dynamic variable and set a

pointer to point at it
•Set a second pointer to the value of the first

pointer
•Deallocate the heap-dynamic variable, using

the first pointer
54CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Problems with pointers
2. Lost Heap-Dynamic Variables (wasteful)

•A heap-dynamic variable that is no longer
referenced by any program pointer

• Creating one:
a. Pointer p1 is set to point to a newly created

heap-dynamic variable
b. p1 is later set to point to another newly

created heap-dynamic variable

• The process of losing heap-dynamic
variables is called memory leakage

55CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Problems with Pointers
1. Pascal: used for dynamic storage

management only
•Explicit dereferencing
•Dangling pointers are possible (dispose)
•Dangling objects are also possible

2. Ada: a little better than Pascal and Modula-2
•Some dangling pointers are disallowed

because dynamic objects can be automatically
deallocated at the end of pointer's scope

•All pointers are initialized to null
•Similar dangling object problem (but rarely

happens)
56CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pointer Problems: C and C++
•Used for dynamic storage management and

addressing
•Explicit dereferencing and address-of operator
•Can do address arithmetic in restricted forms
•Domain type need not be fixed (void *)

float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]
void * - can point to any type and can be type

checked (cannot be dereferenced)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

57CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pointer Problems: Fortran 90

•Can point to heap and non-heap variables
•Implicit dereferencing
•Special assignment operator for non

dereferenced references

REAL, POINTER :: ptr (POINTER is an attribute)
ptr => target (where target is either a pointer or a non-
pointer with the TARGET attribute)

The TARGET attribute is assigned in the declaration, e.g.
INTEGER, TARGET :: NODE

58CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Pointers
5. C++ Reference Types

•Constant pointers that are implicitly dereferenced
•Used for parameters
•Advantages of both pass-by-reference and

pass-by-value
6. Java - Only references

•No pointer arithmetic
•Can only point at objects (which are all on the

heap)
•No explicit deallocator (garbage collection is

used)
•Means there can be no dangling references
•Dereferencing is always implicit

59CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Memory Management

• Memory management: identify unused, dynamically allocated
memory cells and return them to the heap

• Approaches
– Manual: explicit allocation and deallocation (C, C++)
– Automatic:

» Reference counters (modula2, Adobe Photoshop)
» Garbage collection (Lisp, Java)

• Problems with manual approach:
– Requires programmer effort
– Programmer’s failures leads to space leaks and dangling

references/sharing
– Proper explicit memory management is difficult and has been

estimagte to account for up to 40% of development time!

60CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Reference Counting

• Idea: keep track how many references there are to a cell in
memory. If this number drops to 0, the cell is garbage.

• Store garbage in free list; allocate from this list
• Advantages

– immediacy
– resources can be freed directly
– immediate reuse of memory possible

• Disadvantages
– Can’t handle cyclic data structures
– Bad locality properties
– Large overhead for pointer manipulation

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

61CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Garbage Collection (GC)

• GC is a process by which dynamically allocated storage is
reclaimed during the execution of a program.

• Usually refers to automatic periodic storage reclamation by
the garbage collector (part of the run-time system), as
opposed to explicit code to free specific blocks of memory.

• Usually triggered during memory allocation when available
free memory falls below a threshold. Normal execution is
suspended and GC is run.

• Major GC algorithms:
– Mark and sweep
– Copying
– Incremental garbage collection algorithms

62CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Mark and Sweep

• Oldest and simplest algorithm
• Has two phases: mark and sweep
• Collection algorithms: When program runs out of

memory, stop program, do garbage collection and
resume program.

• Here: Keep free memory in free pool. When
allocation encounters empty free pool, do garbage
collection.

• Mark: Go through live memory and mark all live
cells.

• Sweep: Go through whole memory and put a
reference to all non-live cells into free pool.

63CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Evaluation of pointers

•Dangling pointers and dangling objects are
problems, as is heap management

•Pointers are like goto's -- they widen the range of
cells that can be accessed by a variable

•Pointers are necessary--so we can't design a
language without them

64CMSC331. Some material © 1998 by Addison Wesley Longman, Inc.

Summary

This chapter covered Data Types, a large
part of what determines a language’s style
and use. It discusses primitive data types,
user defined enumerations and sub-range
types. Design issues of arrays, records,
unions, set and pointers are discussed along
with reference to modern languages.

