Data Types

Chapter 5

© 1998 by Addison Wesiey Longman, I

Data Types

* Every PL needs avariety of datatypesin
order to better model/match theworld

» More data types makes programming easi er
but too many data types might be confusing

» Which data types are most common? Which

data types are necessary? Which datatypes
are uncommon yet useful ?

» How are data types implemented in the PL?

© 1998 by Addison Wesiev Longman, I

Introduction
This Chapter introduces the concept of a data type
and discusses:

—Characteristics of the common primitive data
types.

—Character strings

—User defined data-types

—Design of enumerations and sub-range data
types

—Design of structured data types including
arrays, records, unions and set types.

—Pointers and heap management

lovscan, © 1998 by Addison Wesiev Longman, |1

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Evolution of Data Types

FORTRAN | (1956) - INTEGER, REAL, arrays

Ada (1983) - User can create a unique type for
every category of variables in the problem space
and have the system enforce the types

Def: A descriptor isthe collection of the attributes
of avariable
Design Issues for all datatypes:
1. What is the syntax of references to variables?

2. What operations are defined and how are they
specified?

lovscan, © 1998 by Addison Wesiey Longman, I

Primitive Data Types

These types are supported directly in the hardware of the
machine and not defined in terms of other types. E.g.:

—Integer: Short Int, Integer, Long Int (etc)

—Floating Point: Real, Double Precision
Stored in 3 parts, sign bit, exponent and mantissa (seefig 5.1
page 199)

—Decimal: BCD (1 digit per 1/2 byte)

used in business languages with a set decimal for dollars and
cents

—Boolean: (TRUE/FALSE, 1/0, T/NIL)
—Character: Using EBCDIC, ASCII, UNICODE, etc.

© 1998 by Addison Wesiey Longman, I

Floating Point

» Mode real numbers, but only as approximations

» Languages for scientific use support at least two
floating-point types; sometimes more

* Usually exactly like the hardware, but not always;
some languages allow accuracy specs in code e.g.
(Ada)

type SPEED is digits 7 range 0.0..1000.0;
type VOLTAGE is delta 0.1 range -12.0..24.0;

* |EEE Floating Point Standard 754
« Singleprecision: 32 bit representation with 1 bit sign, 8 bit
exponent, 23 bit mantissa
« Double precision: 64 bit representation with 1 bit sign, 11
bit exponent, 52 bit mantissa

Decimal and Boolean

Decimal
—For business applications (money)
—Store a fixed number of decimal digits (coded)
—Advantage: accuracy
—Disadvantages. limited range, wastes memory

Boolean
—Could beimplemented as bits, but often as bytes
—Advantage: readability

© 1998 by Addison Wesiev Longman, I

|cscaan, © 1996 by Addison Wesiev | ongman, 1 6

Character Strings

* Characters are another primitive datatype
which map easily into integers.

» We've evol ved through several basic
encodings for characters:
—50s— 70s. EBCDIC (Extended Binary Coded Decimal
Interchange Code) -- Used five bits to represent characters

—70s—00s: ASCII (American Standard Code for Information
Interchange) -- Uses seven bits to represent 128 possible
“ characters’

—00s - : Unicode -- Uses 16 bits to represent ~64K different
characters

Needed as computers become | ess eurocentric to represent
the full range of non-roman aphabets and pictographs.

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

|cscaan, ©.1996 by Addison Wesiev | ongman, 1 8

Character String Types

Values are sequences of characters
Design issues:
* Isit aprimitive type or just a special kind of
array?
* Isthe length of objects static or dynamic?

Typical String Operations:
* Assignment
» Comparison (=, >, &tc.)
* Catenation
* Substring reference
* Pattern matching

© 1998 by Addison Wesiey Longman, I

String examples

SNOBOL - had e aborate pattern matching
FORTRAN 77/90, COBOL, Ada- static length strings

PL/I, Pascal - variable length with static fixed size
strings

SNOBOL, LISP - dynamic lengths

Java - objects which are immutabl e (to change the
length, you have to create a new string object) and + is

the only overloaded operator for string (concat), no
overloading for <, >, efc

© 1998 by Addison Wesiev Longman, I

11

Character Strings
Should a string be a primitive or be definable as an array
of chars?

—In Pascal, C/C++, Ada, strings are not primitives but
can “act” as primitives if specified as “packed” arrays
(i.e. direct assignment, <, =, > comparisons, €tc...).

—In Java, strings are objects and have methods to
support string operations (e.g. length, <, >)

Should strings have static or dynamic length?
Can be accessed using indices (like arrays)

Operations: comparison, assign, input/output, length,
concatenation, append, substr, etc...

|cscaan, © 1996 by Addison Wesiev | ongman, 1 10

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

String Examples

» Some languages, e.g. Snobol, Perl and Tdl, have
extensive built-in support for strings and operations
on strings.

» SNOBOL4 (a string manipulation language)

—Primitive data type with many operations,
including elaborate pattern matching

* Pel

—Patterns are defined in terms of regular expressions
providing a very powerful facility!
[[A-Za-zZ]|[A-Za-2\d]+/
* Java - String class (not arrays of char)

|cscaan, ©.1996 by Addison Wesiev | ongman, 1 12

String Length Options

Static - FORTRAN 77, Ada, COBOL
eg. (FORTRAN 90)
CHARACTER (LEN = 15) NAME;

Limited Dynamic Length - C and C++ actual
length isindicated by anull character

Dynamic - SNOBOLA4, Perl

©.1998 by Addison Wesley Longman, 11 13

Character String Types

Evaluation
* Aid to writability
* As a primitive type with static length, they are
inexpensive to provide -- why not have them?
 Dynamic length is nice, but is it worth the expense?
I mplementation:
« Static length - compile-time descriptor
* Limited dynamic length - may need a run-time
descriptor for length (but not in C and C++)
 Dynamic length - need run-time descriptor;
allocation/deallocation is the biggest
implementation problem

User-Defined Ordinal Types

 An ordinal typeis onein which the range of
possible values can be easily associated with the set
of positive integers

* Enumeration Types -the user enumerates all of
the possible values, which are given symbolic
constants

* Can be used in For-loops, case statements, etc.

* Operations on ordinas include PRED, SUCC,
ORD

* Usually cannot be 1/0 easily
» Mainly used for abstraction/readability

©.1998 by Addison Wesley Longman, 11 15

|cscaan, © 1996 by Addison Wesiev | ongman, 1 14

Examples

Pascal - cannot reuse constants; they can be used for
array subscripts, for variables, case sdectors; NO
input or output; can be compared

Ada - constants can be reused (overloaded literals);
disambiguate with context or type name* (one of
them); can beused asin Pascal; can beinput and
output

C and C++ - like Pascal, except they can beinput
and output as integers

Java - does not include an enumeration type

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

|cscaan, ©.1996 by Addison Wesiev | ongman, 1 16

Ada Example

Some PLs allow a symbolic constant to appear in more
than 1 type, Standard Pascal does not

« Adaisone of thefew languages that allowed a symbol to
name a value in more than one enumerated type.

Type letters is (A, ‘B, ‘C, ... 'Z);

Type vows is (‘A, ‘E, ‘I’, 'O, ‘U);
« Thefollowing is ambiguous:

For letter in ‘A .. ‘O loop

So Ada alows (requires) oneto say:

For letter in vowels(*A)..vowels(‘U) |oop

©.1998 by Addison Wesley Longman, 11 17

Pascal Example
Pascal was one of the first widely used language to have

good facilities for enumerated data types.

Type col orstype = (red, orange, yellow,
green, blue, indigo, violet);

Var skinCol or : colortype;
ski nCol or := bl ue;
If skinColor > green ...

For skinColor :=red to violet do ...;

lovscan, © 1998 by Addison Wesiev Longman, |1

18

Subrange Type

* Limits alarge type to a contiguous subsequence of
values within the larger range, providing additional
flexibility in programming and readability/abstraction

* Availablein C/C++, Ada, Pascal, Modula-2

* Pascal Example

TypeupperCase='A’.."Z"; lowerCase="d..'Z’; index =1..100;
» Ada Example
— Subtypes are not new types, just constrained existing types (so
they are compatible); can be used asin Pascal, plus case

constants, e.9.
subtype POS_TYPE is | NTEGER range O ..|NTECER LAST;

©.1998 by Addison Wesley Longman, 11 19

Ordinal TypesImplementation

* Implementation is straightforward:
enumeration types are implemented as
non-negative integers

* Subrange types are the parent types
with code inserted (by the compiler) to
restrict assignments to subrange
variables

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

lovscan, © 1998 by Addison Wesiey Longman, I

20

Evaluation of Enumeration Types

* Aid to efficiency — e.g., compiler can
select and use a compact efficient
representation (e.g., small integers)

* Aid to readability -- e.g. no need to code
a color as a number

* Aid to maintainability — e.g., adding a
new color doesn’t require updating hard-
coded constants.

* Aid to reliability -- e.g. compiler can
check operations and ranges of value.

©.1998 by Addison Wesley Longman, 11 21

Array Types

* An array is an aggregate of homogeneous data
elements in which an individual dement is
identified by its position in the aggregate, relative
to thefirst e ement.

* Design Issuesinclude:

—What types are legal for subscripts?
—When are subscript ranges bound?

—When does array allocation take place?
—How many subscripts are allowed?

—Can arrays beinitialized at allocation time?
—Arearray slices alowed?

©.1998 by Addison Wesley Longman, 11 22

Array Indices

» Anindex maps into the array to find the specific
element desired
map(arrayName, indexValue) ? array el ement

» Usualy placed inside of [] (Pascal, Modula-2, C,
Java) or () (FORTRAN, PL/I, Ada) marks

—if the same marks are used for parameters then this
wesakens readability and can introduce ambiguity

» 2typesinan array definition
— type of value being stored in array cells
— type of index used

» Lower bound - implicitin C, Javaand early
FORTRAN

©.1998 by Addison Wesley Longman, 11 23

Subscript Bindings and Array Categories
Subscript Types:.

FORTRAN, C - int only

Pascal - any ordinal type (int, boolean, char, enum)
Ada - int or enum (includes boolean and char)
Java - integer types only

©.1998 by Addison Wesley Longman, 11 24

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Array Categories

Four Categories of Arrays based on subscript binding and
binding to storage

1. Static - range of subscripts and storage bindings are static
— eg. FORTRAN 77, somearraysin Ada
— Advantage: execution efficiency (no allocation or

deallocation)

2. Fixed stack dynamic - range of subscriptsis statically
bound, but storage is bound at elaboration time.
— eg. Pascdl locas and C locals that are not static
— Advantage: space efficiency

©.1998 by Addison Wesley Longman, 11 25

Array Categories

4. Heap-dynamic - subscript range and storage bindings are dynamic and
not fixed e.g. (FORTRAN 90)

INTEGER, ALLOCATABLE, ARRAY (:,}) :: MAT
(Declares MAT to be a dynamic 2-dim array)

ALLOCATE (MAT (10, NUMBER_OF_COLYS))
(Allocates MAT to have 10 rowsand NUMBER_OF_COLS columns)

DEALLOCATE MAT

(Deallocates MAT’ s storage)
- In APL & Perl, arrays grow and shrink as needed
- In Java, al arrays are objects (heap-dynamic)

©.1998 by Addison Wesley Longman, 11 27

Array Categories (continued)

3. Sack-dynamic - range and storage are dynamic, but fixed
from then on for the variable' s lifetime
eg. Adadeclareblocks
Decl are
STUFF : array (1..N) of FLQOAT;
begi n
end;
Advantage: flexibility - size need not be known until the array
is about to be used

|cscaan, © 1996 by Addison Wesiev | ongman, 1 26

Array dimensions

» Some languages limit the number of dimensions
that an array can have

FORTRAN I - limited to 3 dimensions
FORTRAN IV and onward - up to 7 dimensions

C/C++, Java- limited to 1 but arrays can be nested
(i.e. array dement is an array) alowing for any
number of dimensions

* Most other languages have no restrictions

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

|cscaan, ©.1996 by Addison Wesiev | ongman, 1 28

Array Initialization

* FORTRAN 77 - initialization at thetime storage is all ocated
I NTEGER LI ST(3)
Data list /0, 5, 5/

. IC length of array isimplicit based on length of initialization

int stuff [] = {2, 4, 6, 8}

Char name [] = Maryl and

Char *names [] = {' ' maryl and ‘virginia’
del aware’ ' };

¢ C/C++, Java- have optiond initializations

* Ada- like C but y oucans#)eufywhlch array lements are
ass nedvalus(lnsieado assigning all values)
:array (1..14,1. 2) :— (1=>(24,10), 2=>(10,7),
3 >(12,30), ot her s= >(0
 Pascd, Modula-2 — don’t havearraylnitializations (Turbo
Pascal does)

© 1998 by Addison Wesiey Longman, I

29

Array Operations

» Operations that apply to an array as a unit (as
opposed to asingle array € ement)

* Most languages have direct assignment of one
array to another (A := B) if both arrays are
equivaent

* FORTRAN: Allows array addition A+B
» Ada: Array concatenation A& B

* FORTRAN 90: library of Array opsincluding
matrix multiplication, transpose

» APL: includes operations for vectors and matrices
(transpose, reverse, €tc...)

©.1998 by Addison Wesley Longman, 11 30

Array Operationsin Java

* In Java, arrays are objects (sometimes called
aggregate types)
* Declaration of an array may omit sizeasin:
—int[] arrayl;
—arrayl isapointer initialized to nil
- at_%later point, the array may get memory allocated it as
Wi
—arrayl =newint[100];
* Array operations other than access
(array1]2]) are through methods such as
arrayl.length

© 1998 by Addison Wesiev Longman, I

31

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Slices

A sliceis some substructure of an array; nothing
more than a referencing mechanism

1. FORTRAN 90 Example
INTEGER MAT (1:4,1:4)
INTEGER CUBE(1:4,1:4,1:4)
MAT(1:4,1) - thefirst column of MAT
MAT(2,1:4) - the second row of MAT
CUBE(1:3,1:3,2:3) — 3x3x2 sub array
2. AdaExample
single-dimensioned arrays only
LIST(4..10)

©.1998 by Addison Wesley Longman, 11 32

Arrays

Implementation of Arrays
« Access function maps subscript expressions to an address
inthearray
* Row major (by rows) or column major order (by columns)

An associative array is an unordered collection of
data elements that are indexed by an equal number
of values called keys

Design Issues:

1. What is the form of references to e ements?
2. Isthe size static or dynamic?

©.1998 by Addison Wesley Longman, 11 33

Perl’s Associative Arrays

« Perl has a primitive datatype for hash tables aka ‘associative arrays”
Elements indexed not by consecutive integers but by arbitrary keys
« O%ages refers to an associative array and @people to a regular array
Note the use of { }5 for associative arrays and []% for regular arrays
%ages = ("Bill Clinton*=>53,"Hillary*=>51, "Socks‘=>"27 in cat years");
S$ages{‘Hillary’} =52;b
@people=("Bill Clinton*,"Hillary*;"Socks");
$ages{‘Bill Clinton"}; # Returns 53
S$people[1]; # returns “Hillary”
* keys(X), values (X) and each(X)
foreach $person (keys(%ages)) {print "I know the age of $person\n”;}
foreach $age (values(%ages)){print "Somebody is $age\n";}
while (($person, $age) = each(%ages)) {print "$person is $age\n";}

©.1998 by Addison Wesley Longman, 11 34

Records

A record is a possibly heterogeneous aggregate of
data elements in which theindividual e ements are
identified by names

Design Issues:
1. What is the form of references?
2. What unit operations are defined?

©.1998 by Addison Wesley Longman, 11 35

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Record Field References

« Record Definition Syntax -- COBOL uses level
numbers to show nested records; others use familiar
dot notation

field_name OF rec_name_1 OF ... OF rec_name_n
rec_name_l.rec_name 2.....rec_name_n.field_name

« Fully qualified references must include all record
names

« Elliptical references allow leaving out record
names as long as the reference is unambiguous

¢ With clausein Pascal and Modula2

With employee.address do
begin
street := ‘422 North Charles St.';
city := ‘Baltimore’;
zip := 21250
end;

©.1998 by Addison Wesley Longman, 11 36

Record Operations

1.Assignment
« Pascal, Ada, and C alow it if the types are identical
—In Ada, the RHS can be an aggregate constant
2. Initialization
 Allowed in Ada, using an aggregate constant
3. Comparison
« In Ada, = and /=; one operand can be an aggregate
constant
4. MOVE CORRESPONDING (Coboal)
Move all fields in the source record to fields with the same
names in the destination record
MOVE CORRESPONDING INPUT-RECORD TO OUTPUT-RECORD

© 1998 by Addison Wesiey Longman, I

37

Recordsand Arrays

Comparing records and arrays

1. Access to array dements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

2. Dynamic subscripts could be used with record
field access, but it would disallow type checking
and it would be much slower

© 1998 by Addison Wesiev Longman, |1

38

Union Types

A union is atype whose variables are alowed to
store different type values at different times during
execution

Design Issues for unions:

1. What kind of type checking, if any, must be
done?

2. Should unions be integrated with records?

3. Isavariant tag or discriminant required?

© 1998 by Addison Wesiev Longman, I

39

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Examples. Unions

1.FORTRAN - with EQUIVALENCE

2. Algol 68 - discriminated unions
« Use a hidden tag to maintain the current type
« Tagisimplicitly set by assignment
» References arelegal only in conformity clause
union (int, real) irl;
int count;
real sum;

Ease irlin
(int intval): count := intval;
(real realval): sum := realval
esac
« This runtime type selection is a safe method of
ng union objects

© 1998 by Addison Wesiey Longman, I

40

Pascal Union Types

Problem with Pascal’ s design: type checking is
ineffective. Reasons:

User can create inconsistent unions (because thetag can be
individually assigned)

var blurb : intreal;

X :real;

blurb.tag :=true; {itis an integer}

blurb.blint :=47; {ok}

blurb.tag := false; {itisareal }

x :=blurb.blreal; {assigns an integer to a real }

Thetagisoptional! Now, only the declaration and the second
and last assignments are required to cause trouble

Pascal Union Types

Pascal has record variants which support both
discriminated & nondiscriminated unions, e.g.

type shape = (circle, triangle, rectangle);
colors = (red,green,blue);
figure = record
filled: boolean;
color: colors;
case form: shape of
circle: (diameter: real);
triangle: (leftside: integer; rightside: integer; angle:real);
rectangle: (sidel: integer; side2: integer)
end;

© 1998 by Addison Wesiev Longman, |1

42

5 b A Wt e 1 41
Pascal Union Types
case myfigure.form of
circle : writeln(1t is a circle; its diameter is’ myfigure.diameter);
triangle : begin
writeln(1t is a triangle);
writeln(“its sides are:’myfigure.leftside, myfigure.rightside);
wtiteln(“the angle between the sides is :% myfigure.angle);
end;
rectangle : begin
writeln(1t is a rectangle);
writeln(“its sides are: “myfigure.sidel, myfigure.side2)
end
end
5 A Wt e 1 43

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Pascal Union Types

But, Pascal allowed for problems because:
— The user could explicitly set the record variant tag
myfigure.form := triangle
— The variant tag is option. We could have defined a figure as:
Type figure = record ..
case shape of
circle: (diameter: real);

end

Pascal’ s variant records introduce potential type problems,
but are also aloophole which alows you to do, for
example pointer arithmetic.

© 1998 by Addison Wesiey Longman, I

Ada Union Types

Adaonly has “discriminated unions”

These are safer than union types in Pascal &
Modula2 because:

—Thetag must be present
—It isimpossible for the user to create an

must include the tag value)

lovsca, © 1998 by Addison Wesiey Longman, I

inconsistent union (because tag cannot be
assigned by itsdlf -- All assignments to the union

45

Union Types

C and C++ have only free unions (no tags)
* Not part of their records
* No type checking of references

6. Java has neither records nor unions

Evaluation - potentially unsafe in most
languages (not Ada)

lovscan, © 1998 by Addison Wesiev Longman, |1

46

Set Types

« Design Issue:

base type?

« Usually implemented as a bit vector.

lovsca, © 1998 by Addison Wesiev Longman, I

« A set isatype whose variables can store unordered
collections of distinct values from some ordinal type

— What is the maximum number of eementsin any set

— Allows for very efficient implementation of basic set
operations (e.g., membership check, intersection, union)

47

Setsin Pascal

» No maximum size in the language definition and
implementation dependant and usually a function
of hardware word size (eg., 64, 96, ...).

* Result: Code not portable, poor writability if max
istoo small

* Set operations: union (+), intersection (*),
difference (-), =, <>, superset (>=), subset (<=), in

Type colors = (red,blue,green,yellow,orange,white,black);

colorset = set of colors;
var sl, s2 : colorset;

s1 := [red,blue,yellow,white];
s2 := [black,blue];

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

lovscan, © 1998 by Addison Wesiey Longman, I

48

Examples

2. Modula-2 and Modula-3

* Additional operations. INCL, EXCL, /
(symmetric set difference (dements in one but not
both operands))

3. Ada - does not include sets, but definesin as set
membership operator for all enumeration types

4. Javaincludes a class for set operations

© 1998 by Addison Wesiey Longman, I

49

Pointers

A pointer typeis atypein which the range of values
consists of memory addresses and a special value,
nil (or null)
Uses:

1. Addressing flexibility

2. Dynamic storage management
Design Issues:

* What is the scope and lifetime of pointer variables?

* What is thelifetime of heap-dynamic variables?

 Are pointers restricted to pointing at a particular type?

« Are pointers used for dynamic storage management,
indirect addressing, or both?

« Should alanguage support pointer types, reference types, or
both?

© 1998 by Addison Wesiev Longman, I

Evaluation

« If alanguage does not have sets, they must be
simulated, either with enumerated types or with
arrays

* Arrays are more flexible than sets, but have
much slower operations

Implementation

 Usually stored as bit strings and use logica
operations for the set operations.

lovscan, © 1998 by Addison Wesiev Longman, |1

50

51

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Fundamental Pointer Operations

» Assignment of an address to a pointer
» References (explicit versus implicit
dereferencing)

© 1998 by Addison Wesiey Longman, I

52

Problems with pointers

1. Dangling pointers (dangerous)
* A pointer points to a heap-dynamic variabl e that
has been deallocated

* Creating one:
* Allocate a heap-dynamic variable and set a
pointer to point at it
* Set a second pointer to the value of thefirst
pointer
* Desdllocate the heap-dynamic variable, using
the first pointer

lovsca, © 1998 by Addison Wesiey Longman, I

53

Problems with pointers

2. Lost Heap-Dynamic Variables (wasteful)
* A heap-dynamic variable that is no longer
referenced by any program pointer

» Cregting one:
a. Pointer pl is set to point to a newly created
heap-dynamic variable
b. plislater set to point to another newly
created heap-dynamic variable

» The process of losing heap-dynamic
variablesis called memory leakage

© 1998 by Addison Wesiev Longman, |1

54

Problems with Pointers

1. Pascal: used for dynamic storage
management only
* Explicit dereferencing
 Dangling pointers are possible (dispose)
» Dangling objects are aso possible
2. Ada: alittle better than Pascal and Modula-2
» Some dangling pointers are disallowed
because dynamic objects can be automatically
dedllocated at the end of pointer's scope
* All pointers areinitialized to null
* Similar dangling object problem (but rarely
happens)

lovsca, © 1998 by Addison Wesiev Longman, I

55

Pointer Problems: C and C++

* Used for dynamic storage management and
addressing
* Explicit dereferencing and address-of operator
+ Can do address arithmetic in restricted forms
» Domain type need not be fixed (void *)
float stuff[100];
float *p;
p = stuff;
*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivaent to stuffi] and p[i]
void * - can point to any type and can be type
checked (cannot be dereferenced)

© 1998 by Addison Wesiey Longman, I

56

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

* Implicit dereferencing
* Special assignment operator for non
dereferenced references

pointer with the TARGET attribute)

INTEGER, TARGET :: NODE

lovsca, © 1998 by Addison Wesiey Longman, I

Pointer Problems; Fortran 90

* Can point to heap and non-heap variables

REAL, POINTER :: ptr (POINTER isan attribute)
ptr => target (where target is either a pointer or a non-

The TARGET attributeis assigned in the declaration, e.g.

57

Pointers

5. C++ Reference Types
* Constant pointers that areimplicitly dereferenced
* Used for parameters
* Advantages of both pass-by-reference and
pass-by-value
6. Java - Only references
 No pointer arithmetic
 Can only point at objects (which aredl onthe
heap)
» No explicit dedll ocator (garbage collection is
used)
» Means there can be no dangling references
* Dereferencing is always implicit

© 1998 by Addison Wesiev Longman, |1

58

Memory M anagement

memory cells and return them to the heap
« Approaches

— Automatic:

» Garbage collection (Lisp, Java)
« Problems with manual approach:

— Requires programmer effort

— Programmer’ s failures leads to space leaks and dangling
references/sharing

estimagte to account for up to 40% of development time!

lovsca, © 1998 by Addison Wesiev Longman, I

* Memory management: identify unused, dynamically allocated

—Manual: explicit alocation and deallocation (C, C++)

» Reference counters (modula2, Adobe Photoshop)

— Proper explicit memory management is difficult and has been

59

Reference Counting

« |dea: keep track how many references thereareto acell in
memory. If this number dropsto O, the cell is garbage.

« Store garbagein freelist; alocate from this list
¢ Advantages

—immediacy

—resources can be freed directly

—immediate reuse of memory possible
« Disadvantages

—Can't handle cyclic data structures

—Bad locality properties

— Large overhead for pointer manipulation

© 1998 by Addison Wesiey Longman, I

60

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Garbage Coallection (GC)

* GC isaprocess by which dynamically alocated storageis
reclaimed during the execution of a program.

« Usually refers to automatic periodic storage reclamation by
the garbage collector (part of the run-time system), as
opposed to explicit code to free specific blocks of memory.

« Usually triggered during memory allocation when available
free memory falls below athreshold. Normal execution is
suspended and GC is run.

* Major GC algorithms:
—Mark and sweep
—Copying
—Incremental garbage collection algorithms

© 1998 by Addison Wesiey Longman, I

61

Mark and Sweep

* Oldest and simplest algorithm
* Has two phases. mark and sweep

* Collection agorithms: When program runs out of
memory, stop program, do garbage collection and
resume program.

» Here: Keep free memory in free pool. When
allocation encounters empty free pool, do garbage
collection.

» Mark: Go through live memory and mark al live
cdls.

» Sweep: Go through whole memory and put a
referenceto all non-live cdlsinto free pool.

©.1998 by Addison Wesley Longman, 11 62

Evaluation of pointers

» Dangling pointers and dangling objects are
problems, as is heap management

* Pointers are like goto's -- they widen the range of
cells that can be accessed by avariable

* Pointers are necessary--so we can't design a
language without them

© 1998 by Addison Wesiev Longman, I

63

CMSC331. Somematerial © 1998 by Addison Wesley L ongman, Inc.

Summary

This chapter covered Data Types, alarge
part of what determines alanguage' s style
and use. It discusses primitive data types,
user defined enumerations and sub-range
types. Design issues of arrays, records,
unions, set and pointers are discussed along
with reference to modern languages.

©.1998 by Addison Wesley Longman, 11 64

