Chapter 3

Describing Syntax and Semantics

Why and How

Why? We want specifications for several communities:
-Other language designers

- Implementors
- Programmers (the users of the language)

How? One ways is via natural language descriptions (e.g., user's manuals, text books) but there are a number of techniques for specifying the syntax and semantics that are more formal.

Introduction
 We usually break down the problem of defining a programming language into two parts.
 - Defining the PL's syntax
 - Defining the PL's semantics
 Syntax - the form or structure of the expressions, statements, and program units
 Semantics - the meaning of the expressions, statements, and program units.
 Note: There is not always a clear boundary between the two. bur

Syntax Overview

- Language preliminaries
- Context-free grammars and BNF
- Syntax diagrams

Introduction

A sentence is a string of characters over some alphabet.

A language is a set of sentences.
A lexeme is the lowest level syntactic unit of a language (e.g., *, sum, begin).

A token is a category of lexemes (e.g., identifier).
Formal approaches to describing syntax:

1. Recognizers - used in compilers
2. Generators - what we'll study

Grammars

Context-Free Grammars

- Developed by Noam Chomsky in the mid1950s.
- Language generators, meant to describe the syntax of natural languages.
- Define a class of languages called context-free languages.

Backus Normal/Naur Form (1959)

- Invented by John Backus to describe Algol 58 and refined by Peter Naur for Algol 60.
- BNF is equivalent to context-free grammars

Lexical Structure of Programming Languages

- The structure of its lexemes (words or tokens) - token is a category of lexeme
- The scanning phase (lexical analyser) collects characters into tokens
- Parsing phase(syntactic analyser)determines syntactic structure

BNF (continued)

A metalanguage is a language used to describe another language.

In BNF, abstractions are used to represent classes of syntactic structures--they act like syntactic variables (also called nonterminal symbols), e.g.
<while_stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while statement

BNF

- A rule has a left-hand side (LHS) which is a single non-terminal symbol and a right-hand side (RHS), one or more terminal or nonterminal symbols.
- A grammar is a finite nonempty set of rules
- A non-terminal symbol is "defined" by one or more rules.
- Multiple rules can be combined with the \mid symbol so that
<stmts> ::= <stmt>
<stmts> ::= <stmnt> ; <stmnts>
And this rule are equivalent

```
<stmts> ::= <stmt> <stmnt> ; <stmnts>
```


BNF

Syntactic lists are described in BNF using recursion
<ident_list> -> ident
| ident, <ident_list>

A derivation is a repeated application of rules, starting with the start symbol and ending with a sentence (all terminal symbols)

BNF Example

Here is an example of a simple grammar for a subset of English. A sentence is noun phrase and verb phrase followed by a period.

$$
\begin{array}{ll}
\text { <sentence> } & ::=\text { <noun-phrase><verb-phrase>. } \\
\text { <noun-phrase> } & ::=\text { <article><noun> } \\
\text { <article> } & ::=\text { a | the } \\
\text { <noun> } & ::=\text { man | apple | worm | penguin } \\
\text { <verb-phrase> } & ::=\text { <verb> | <verb><noun-phrase> } \\
\text { <verb> } & ::=\text { eats | throws | sees | is }
\end{array}
$$

Another BNF Example

```
<program> -> <stmts>
<stmts> -> <stmt>
    | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> ->> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a derivation:
<program> => <stmts> => <stmt>
=> <var> = <expr> => a = <expr>
=> a = <term> + <term>
=> a = <var> + <term>
=> a = b + <term>
=> a = b + const
```


Grammar

A grammar is ambiguous iff it generates a sentential form that has two or more distinct parse trees.

Ambiguous grammars are, in general, very undesirable in formal languages.

We can eliminate ambiguity by revising the grammar.

Grammar

Here is a simple grammar for expressions that is ambiguous
<expr> -> <expr> <op> <expr>
<expr> -> int
<op> -> +|-|*|/
The sentence $1+2 * 3$ can lead to two different parse trees corresponding to $1+(2 * 3)$ and $(1+2) * 3$

Grammar

If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

Grammar (continued)

<expr> => <expr> - <term> => <term> - <term>
=> const - <term>
=> const - <term> / const
=> const - const / const
Operator associativity can also be indicated by a grammar

```
<expr> -> <expr> + <expr> | const (ambiguous)
```

<expr> -> <expr> + const | const (unambiguous)

An Expression Grammar

Here's a grammar to define simple arithmetic expressions over variables and numbers.

Exp $::=$ num
$\operatorname{Exp}::=$ id
Exp ::= UnOp Exp
Exp := Exp BinOp Exp
Exp ::= '(' Exp ')'
UnOp ::= '+'
Here's another common notation variant where single quotes are used to indicate terminal symbols and unquoted symbols are taken as non-terminals.

A derivation

Here's a derivation of $\mathrm{a}+\mathrm{b} * 2$ using the expression grammar:
Exp =>
// Exp ::= Exp BinOp Exp

Exp Binop Exp => // Exp ::= id
id BinOp Exp => // BinOp ::= '+
id + Exp => // Exp ::= Exp BinOp Exp
id + Exp BinOp Exp => // Exp ::= num
id + Exp BinOp num => // Exp ::= id
id + id BinOp num => // BinOp ::= '*'
id + id * num
a +b * 2

UnOp ::= '-'
BinOp ::= '+' | '-' |'*'| |'/

A parse tree

A parse tree for $a+b * 2$:

Precedence

Precedence refers to the order in which operations are evaluated. The convention is: exponents, mult div, add sub.

- Deal with operations in categories: exponents, mulops, addops

Here's a revised grammar that follows these conventions:

$$
\begin{aligned}
& \text { / }{ }^{\operatorname{Exp}} \\
& \text { Exp BinOp Exp } \\
& \text { | | / | \ } \\
& \text { identifier + Exp BinOp Exp } \\
& \text { identifier * number }
\end{aligned}
$$

```
Exp ::= Exp AddOp Exp
Exp ::= Term
Term ::= Term MulOp Term
Term ::= Factor
Factor ::= '(' + Exp + ')'
Factor ::= num | id
AddOp ::= '+' | '-'
MulOp ::= '*' | '/'
```


Associativity

Associativity refers to the order in which 2 of the same operation should be computed
$-3+4+5=(3+4)+5$, left associative (all BinOps
$-3^{\wedge} 4^{\wedge} 5=3^{\wedge}\left(4^{\wedge} 5\right)$, right associative

- 'if x then if x then y else y^{\prime} ' $=$ 'if x then (if x then y else y)', else associates
with closest unmatched if (matched if has an else)

Adding associativity to the BinOp expression grammar

```
Exp ::= Exp AddOp Term
Exp ::= Term
Term ::= Term MulOp Factor
Term ::= Factor
Factor ::= '(' Exp ')
Factor ::= num | id
AddOp ::= '+' | '-
MulOp ::= '*' | '/
```


Another example: conditionals

- Goal: to create a correct grammar for conditionals.
- It needs to be non-ambiguous and the precedence is else with nearest unmatched if.

Statement ::= Conditional | 'whatever Conditional ::= 'if' test 'then' Statement 'else' Statement Conditional ::= 'if' test 'then' Statement

- The grammar is ambiguous. The 1 st Conditional allows unmatched if's to be Conditionals. if test then (if test then whatever else whatever) $=$ correct if test then (if test then whatever) else whatever $=$ incorrect
- The final unambiguous grammar.

```
atement ::= Matched Unmatche
Matched ::= 'if' test 'then' Matched 'else' Matched | 'whatever'
```

Unmatched ::= 'if' test 'then' Statement

$$
\begin{aligned}
& \text { f' test 'then' Statement } \\
& \text { | 'if' test 'then' Matched else Unmatched }
\end{aligned}
$$

Extended BNF

Syntactic sugar: doesn't extend the expressive power of the formalism, but does make it easier to use.

Optional parts are placed in brackets ([])
<proc_call> -> ident [(<expr_list>)]
Put alternative parts of RHSs in parentheses and separate them with vertical bars
<term> -> <term> (+ |-) const

Put repetitions (0 or more) in braces ($\}$)

$$
\text { <ident> -> letter }\{\text { letter | digit }\}
$$

Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses and put the nonterminals in rectangles; connect with lines with arrowheads
e.g., Pascal type declarations

- A grammar describes the strings of tokens that are syntactically legal in a PL
- A recogniser simply accepts or rejects strings.
- A parser construct a derivation or parse tree.
- Two common types of parsers:
- bottom-up or data driven
- top-down or hypothesis driven
- A recursive descent parser traces is a way to implement a top-down parser that is particularly simple.

Parsing

Recursive Decent Parsing

- Each nonterminal in the grammar has a subprogram associated with it; the subprogram parses all sentential forms that the nonterminal can generate
- The recursive descent parsing subprograms are built directly from the grammar rules
- Recursive descent parsers, like other topdown parsers, cannot be built from leftrecursive grammars (why not?)

Semantics

Semantics Overview

- Syntax is about "form" and semantics about "meaning".
- The boundary between syntax and semantics is not always clear.
- First we'll look at issues close to the syntax end, what Sebesta calls "static semantics", and the technique of attribute grammars.
- Then we'll sketch three approaches to defining
"deeper" semantics
- Operational semantics
- Axiomatic semantics
- Denotational semantics

Static Semantics

Static semantics covers some language features that are difficult or impossible to handle in a BNF/CFG.

It is also a mechanism for building a parser which produces a "abstract syntax tree" of it's input.

Categories attribute grammars can handle:

- Context-free but cumbersome (e.g. type checking)
- Noncontext-free (e.g. variables must be declared before they are used)

Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)

- CFGs cannot describe all of the syntax of programming languages
- Additions to CFGs to carry some "semantic" info along through parse trees

Primary value of AGs:

- Static semantics specification
- Compiler design (static semantics checking)

Attribute Grammar Example

In Ada we have the following rule to describe prodecure definitions:
<proc> -> procedure <procName> <procBody> end <procName> ;
But, of course, the name after "procedure" has to be the same as the name after "end".
This is not possible to capture in a CFG (in practice) because there are too many names.
Solution: associate simple attributes with nodes in the parse tree and add a "semantic" rules or constraints to the syntactic rule in the grammar.
<proc> -> procedure <procName>[1] <procBody> end <procName>[2]; <procName][1].string $=\langle$ procName>[2].string

Attribute Grammars

Def: An attribute grammar is a CFG
G=(S,N,T,P)
with the following additions:

- For each grammar symbol x there is a set $\mathrm{A}(x)$ of attribute values.
- Each rule has a set of functions that define certain attributes of the nonterminals in the rule.
- Each rule has a (possibly empty) set of predicates to check for attribute consistency

Attribute Grammars

Let $X_{0}->X_{1} \ldots X_{n}$ be a rule.
Functions of the form $\mathrm{S}\left(\mathrm{X}_{0}\right)=\mathrm{f}\left(\mathrm{A}\left(\mathrm{X}_{1}\right), \ldots \mathrm{A}\left(\mathrm{X}_{\mathrm{n}}\right)\right)$ define synthesized attributes

Functions of the form $I\left(X_{j}\right)=f\left(A\left(X_{0}\right), \ldots, A\left(X_{n}\right)\right)$ for i <= j <= n define inherited attributes

Initially, there are intrinsic attributes on the leaves

Attribute Grammars

Example: expressions of the form id + id
-id's can be either int_type or real_type

- types of the two id's must be the same
- type of the expression must match it's expected type

```
BNF: <expr> -> <var> + <var>
    <var> -> id
```

Attributes:
actual_type - synthesized for <var> and <expr>
expected_type - inherited for <expr>

```
Attribute Grammars
Attribute Grammar:
1. Syntax rule: <expr> -> <var> [1] + <var>[2]
    Semantic rules:
        <expr>.actual_type \leftarrow<var> [1].actual_type
    Predicate
        <var>[1].actual_type = <var> [2].actual_type
        <expr>.expected_type = <expr>.actual_type
2.Syntax rule: <var> -> id
    Semantic rule:
        <var>.actual_type \leftarrow lookup (id, <var>)

\section*{Attribute Grammars (continued)}

How are attribute values computed?
-If all attributes were inherited, the tree could be decorated in top-down order.
-If all attributes were synthesized, the tree could be decorated in bottom-up order.
-In many cases, both kinds of attributes are used, and it is some combination of topdown and bottom-up that must be used.

\section*{Attribute Grammars (continued)}
<expr>. expected_type \(\leftarrow\) inherited from parent
<var> [1]. actual_type \(\leftarrow\) lookup (A, <var> [1])
<var>[2]. actual_type \(\leftarrow\) lookup (B, <var>[2])
<var> [1]. actual_type =? <var> [2]. actual_type
<expr>.actual_type \(\leftarrow\) <var> [1]. actual_type
<expr>.actual_type \(=\) ? <expr>. expected_type

\section*{Dynamic Semantics}

No single widely acceptable notation or formalism for describing semantics.
The general approach to defining the semantics of any language \(L\) is to specify a general mechanism to translate any sentence in \(L\) into a set of sentences in another language or system that we take to be well defined.

Here are three approaches we'll briefly look at:
- Operational semantics
- Axiomatic semantics
- Denotational semantics

\section*{Operational Semantics}
- Idea: describe the meaning of a program in language \(L\) by specifying how statements effect the state of a machine, (simulated or actual) when executed.
- The change in the state of the machine (memory registers, stack, heap, etc.) defines the meaning of the statement.
- Similar in spirit to the notion of a Turing Machine and also used informally to explain higher-level constructs in terms of simpler ones, as in:
\[
\mathrm{c} \text { statement }
\]
\(\qquad\) operational semantics
for (e1;e2;e3)

exit

\section*{Operational Semantics}
- To use operational semantics for a high-level language, a virtual machine in needed
- A hardware pure interpreter would be too expensive
- A software pure interpreter also has problems:
- The detailed characteristics of the particular
- computer would make actions difficult to understand
- Such a semantic definition would be machine-dependent

\section*{Operational Semantics}

A better alternative: A complete computer simulation
- Build a translator (translates source code to the machine code of an idealized computer)
- Build a simulator for the idealized computer

Evaluation of operational semantics:
- Good if used informally
- Extremely complex if used formally (e.g. VDL)

\section*{Vienna Definition Language}
- VDL was a language developed at IBM Vienna Labs as a language for formal, algebraic definition via operational semantics.
- It was used to specify the semantics of PL/I.
- See: The Vienna Definition Language, P. Wegner, ACM Comp Surveys 4(1):5-63 (Mar 1972)
- The VDL specification of PL/I was very large, very complicated, a remarkable technical accomplishment, and of little practical use.

\section*{Axiomatic Semantics}
- Based on formal logic (first order predicate calculus)
- Original purpose: formal program verification
- Approach: Define axioms and inference rules in logic for each statement type in the language (to allow transformations of expressions to other expressions)
- The expressions are called assertions and are either
- Preconditions: An assertion before a statement states the relationships and constraints among
\[
\forall \mathrm{x} \text { prime }(\mathrm{x}) \Rightarrow \exists \mathrm{y} \text { prime }(\mathrm{y}) \wedge \mathrm{y}>
\] variables that are true at that point in execution
- Postconditions: An assertion following a statement

\section*{Logic 101}

Propositional logic:
Logical constants: true, false
Propositional symbols: P, Q, S, ... that are either true or false
Logical connectives: \(\wedge\) (and),\(\vee\) (or), \(\Rightarrow\) (implies), \(\Leftrightarrow\) (is equivalent), \(\neg\) (not) which are defined by the truth tables below.
Sentences are formed by combining propositional symbols, connectives and parentheses and are either true or false. e.g.: \(\mathrm{P} \wedge \mathrm{Q} \Leftrightarrow \neg(\neg \mathrm{P} \vee \neg \mathrm{Q})\)
First order logic adds
Variables which can range over objects in the domain of discourse
Quantifiers including: \(\forall\) (forall) and \(\exists\) (there exists)
Example sentences:
\[
\forall \mathrm{p})(\forall \mathrm{q}) \mathrm{p} \wedge \mathrm{q} \Leftrightarrow \neg(\neg \mathrm{p} \vee \neg \mathrm{q})
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(P\) & \(Q\) & \(\neg{ }^{P}\) & PAQ & \(P \mathrm{~V} Q\) & \(P \Rightarrow\) Q & \(P \Leftrightarrow Q\) \\
\hline False & Fuls & Thre & Fids & Fals & Tmse & True \\
\hline Fulse & Thes & Ther & Fids & True & Thse & Fals \\
\hline True & Fale & False & Folle & True & False & False \\
\hline True & Thes & Fulse & Thue & True & Ther & True \\
\hline
\end{tabular}

\section*{Axiomatic Semantics}
- A weakest precondition is the least restrictive precondition that will guarantee the postcondition Notation:
\(\{\mathrm{P}\}\) Statement \(\{\mathrm{Q}\}\)
precondition \(\quad\) postcondition

\section*{Example:}
\[
\{?\} \mathrm{a}:=\mathrm{b}+1 \quad\{\mathrm{a}>1\}
\]

We often need to infer what the precondition must be for a given postcondition
One possible precondition: \(\{b>10\}\)
Weakest precondition: \(\{b>0\}\)

\section*{Axiomatic Semantics}

Program proof process:
- The postcondition for the whole program is the desired results.
- Work back through the program to the first statement.
- If the precondition on the first statement is the same as the program spec, the program is correct.

\section*{Example: Assignment Statements}

Here's how we might define a simple assignment statement of the form \(\boldsymbol{x}:=\boldsymbol{e}\) in a programming language.
- \(\left\{\mathrm{Q}_{\mathrm{x} \rightarrow \mathrm{E}}\right\} \mathrm{x}:=\mathrm{E}\{\mathrm{Q}\}\)
- Where \(\mathrm{Q}_{\mathrm{x} \rightarrow \mathrm{E}}\) means the result of replacing all occurrences of \(x\) with \(E\) in \(Q\)
So from
\(\{\mathrm{Q}\} \mathrm{a}:=\mathrm{b} / 2-1\{\mathrm{a}<10\}\)
We can infer that the weakest precondition Q is
\(b / 2-1<10\) or \(b<22\)

\section*{Conditions}

Here's a rule for a conditional statement
 \(\{\mathrm{P}\}\) if B then S 1 else \(\mathrm{S} 2\{\mathrm{Q}\}\)
And an example of it's use for the statement
\(\{P\}\) if \(x>0\) then \(y=y-1\) else \(y=y+1\{y>0\}\)
So the weakest precondition P can be deduced as follows: The postondition of S 1 and S 2 is Q .
The weakest precondition of S 1 is \(x>0 \wedge y>1\) and for S 2 is \(x>0 \wedge y>-1\)
The rule of consequence and the fact that \(y>1 \Rightarrow y>-1\) supports the conclusion
That the weakest precondition for the entire conditional is \(y>1\).

\section*{Axiomatic Semantics}
-The Rule of Consequence:
\[
\frac{\{\mathrm{P}\} \mathrm{S}\{\mathrm{Q}\}, \mathrm{P}^{\prime} \Rightarrow \mathrm{P}, \mathrm{Q}=\mathrm{Q}^{\prime}}{\left\{\mathrm{P}^{\prime}\right\} \mathrm{S}\left\{\mathrm{Q}^{\prime}\right\}}
\]
- An inference rule for sequences
- For a sequence \(\mathrm{S} 1 ; \mathrm{S} 2\) :
\{P1\} S1 \{P2\}
\{P2\} S2 \{P3\}
the inference rule is:

\[
\{\mathrm{P} 1\} \mathrm{S} 1\{\mathrm{P} 2\},\{\mathrm{P} 2\} \mathrm{S} 2\{\mathrm{P} 3\}
\]
\[
\{\mathrm{P} 1\} \mathrm{S} 1 ; \mathrm{S} 2\{\mathrm{P} 3\}
\]

\section*{Loops}

For the loop construct \(\{\mathrm{P}\}\) while B do S end \(\{\mathrm{Q}\}\) the inference rule is:
\(\frac{\{I \wedge B\} S\{I\}}{\{I\} \text { while } B \text { do } S\{I \wedge \neg B\}}\)
where I is the loop invariant, a proposition necessarily true throughout the loop's execution.

\section*{Loop Invariants}

A loop invariant \(I\) must meet the following conditions:
1. \(\mathrm{P}=>\mathrm{I} \quad\) (the loop invariant must be true initially)
2. \(\{I\} B\{I\} \quad\) (evaluation of the Boolean must not change the validity of \(I\) )
3. \{I and B\} \(\mathrm{S}\{\mathrm{I}\} \quad\) (I is not changed by executing the body of the loop)
4. ( \((\) and \((\) not \(B))=>Q \quad\) (if \(I\) is true and \(B\) is false, \(Q\) is implied)
5. The loop terminates (this can be difficult to prove)
- The loop invariant I is a weakened version of the loop postcondition, and it is also a precondition.
- I must be weak enough to be satisfied prior to the beginning of the loop, but when combined with the loop exit condition, it must be strong enough to force the truth of the postcondition

\section*{Evaluation of Axiomatic Semantics}
- Developing axioms or inference rules for all of the statements in a language is difficult
- It is a good tool for correctness proofs, and an excellent framework for reasoning about programs
- It is much less useful for language users and compiler writers

\section*{Denotational Semantics}
- A technique for describing the meaning of programs in terms of mathematical functions on programs and program components.
- Programs are translated into functions about which properties can be proved using the standard mathematical theory of functions, and especially domain theory.
- Originally developed by Scott and Strachey (1970) and based on recursive function theory
- The most abstract semantics description method

\section*{Denotational Semantics (continued)}

The difference between denotational and operational semantics: In operational semantics, the state changes are defined by coded algorithms; in denotational semantics, they are defined by rigorous mathematical functions
- The state of a program is the values of all its current variables
\[
s=\left\{\left\langle i_{1}, v_{1}\right\rangle,\left\langle i_{2}, v_{2}\right\rangle, \ldots,\left\langle i_{n}, v_{n}\right\rangle\right\}
\]
- Let VARMAP be a function that, when given a variable name and a state, returns the current value of the variable

\section*{Example: Decimal Numbers}
```

<dec_num> }->0|1|2|3|4|5|6|7|8|
| <dec_num> (0|1/2;3/4|5|6|7]8|9)
M (ecc
M}\mp@subsup{M}{\mathrm{ dec }}{}(<dec_num>'0')=10* M M dec (<dec_num>
M Mec (<dec_num> '1') = 10* M M dec (<dec_num>) + 1
M dec (<dec_num> '9') = 10* M M dec (<dec_num>) + 9
<dec_num> $\rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$ | <dec_num> (0|1|2|3|4|5|6|7|8|9)
$\mathrm{M}_{\mathrm{dec}}\left(\right.$ '0' $\left.^{\prime}\right)=0, \mathrm{M}_{\mathrm{dec}}\left({ }^{\prime} 1^{\prime}\right)=1, \ldots, \mathrm{M}_{\mathrm{dec}}\left(\right.$ ' $\left.^{\prime}\right)=9$
$\mathbf{M}_{\text {dec }}\left(\left\langle d e c _n u m>{ }^{\prime} 0^{\prime}\right)=10 * M_{\text {dec }}\right.$ (<dec_num>)
$\mathbf{M}_{\text {dec }}\left(\langle\right.$ dec_num $>~ ' 1 ')=10 * M_{\text {dec }}(\langle$ dec_num $\rangle)+1$
$\mathrm{M}_{\text {dec }}(<$ dec_num $>~ ' 9 ')=10 * \mathrm{M}_{\text {dec }}(\langle$ dec_num $>)+9$

```
\(\operatorname{VARMAP}\left(\mathrm{i}_{\mathrm{j}}, \mathrm{s}\right)=\mathrm{v}_{\mathrm{j}}\)

\section*{Expressions}
\(\mathrm{M}_{\mathrm{e}}(\) <expr>, s) \(\Delta=\)
case <expr> of
<var> =>
if VARMAP(<var>, \(s\) ) = undef
then error
else VARMAP(<var>, s)
<binary_expr> =>
if \(\left(\mathrm{M}_{\mathrm{e}}\right.\) (<binary_expr>.<left_expr>, s\()=\) undef OR \(\mathrm{M}_{\mathrm{e}}\) (<binary_expr>.<right_expr>, s\()=\) undef)
then error
else
if (<binary_expr>. <operator> = ' + ' then \(\mathrm{M}_{\mathrm{e}}\) (<binary_expr>.<left_expr>, s) + \(\mathrm{M}_{\mathrm{e}}\) (<binary_expr>.<right_expr>, s) else \(\mathrm{M}_{\mathrm{e}}\) (<binary_expr>.<left_expr>, s) \(\mathrm{M}_{\mathrm{e}}\) (<binary_expr>.<right_expr>, s)

\section*{Assignment Statements}
\(\mathrm{M}_{\mathrm{a}}(\mathrm{x}:=\mathrm{E}, \mathrm{s}) \Delta=\)
if \(\mathrm{M}_{\mathrm{e}}(\mathrm{E}, \mathrm{s})=\) error
then error
else \(s^{\prime}=\left\{\left\langle i_{1}{ }^{\prime}, v_{1}{ }^{\prime}\right\rangle,\left\langle\mathrm{i}_{2}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}\right\rangle, \ldots,\left\langle\mathrm{i}_{\mathrm{n}}{ }^{\prime}, \mathrm{v}_{\mathrm{n}}{ }^{\prime}\right\rangle\right\}\),
where for \(\mathrm{j}=1,2, \ldots, \mathrm{n}\),
\(\mathrm{v}_{\mathrm{j}}{ }^{\prime}=\operatorname{VARMAP}\left(\mathrm{i}_{\mathrm{j}}, \mathrm{s}\right)\) if \(\mathrm{i}_{\mathrm{j}}\langle>\mathrm{x}\)
\(=M_{e}(E, s)\) if \(i_{j}=x\)

\section*{Logical Pretest Loops}
\(\mathrm{M}_{\mathrm{l}}\) (while B do L, s) \(\Delta=\)
if \(M_{b}(B, s)=\) undef
then error
else if \(M_{b}(B, s)=\) false
then s
else if \(\mathrm{M}_{\mathrm{sl}}(\mathrm{L}, \mathrm{s})=\) error
then error
else \(\mathrm{M}_{\mathrm{l}}\left(\right.\) while B do \(\mathrm{L}, \mathrm{M}_{\mathrm{sl}}(\mathrm{L}, \mathrm{s})\) )

\section*{Logical Pretest Loops}
- The meaning of the loop is the value of the program variables after the statements in the loop have been executed the prescribed number of times, assuming there have been no errors
- In essence, the loop has been converted from iteration to recursion, where the recursive control is mathematically defined by other recursive state mapping functions
- Recursion, when compared to iteration, is easier to describe with mathematical rigor

\section*{Denotational Semantics}

Evaluation of denotational semantics:
- Can be used to prove the correctness of programs
- Provides a rigorous way to think about programs
- Can be an aid to language design
- Has been used in compiler generation systems

\section*{Summary}

This chapter covered the following
- Backus-Naur Form and Context Free

Grammars
- Syntax Graphs and Attribute Grammars
- Semantic Descriptions: Operational, Axiomatic and Denotational```

