
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 1

Chapter 3Chapter 3
Describing Syntax

and Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 2

We usually break down the problem of defining a
programming language into two parts.
•Defining the PL’s syntax
•Defining the PL’s semantics

Syntax - the form or structure of the expressions,
statements, and program units

Semantics - the meaning of the expressions,
statements, and program units.

Note: There is not always a clear boundary
between the two.

Introduction

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 3

Why and How

Why? We want specifications for several
communities:
–Other language designers
•Implementors
•Programmers (the users of the language)

How? One ways is via natural language descriptions
(e.g., user’s manuals, text books) but there are a
number of techniques for specifying the syntax and
semantics that are more formal.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 4

Syntax Overview

• Language preliminaries
• Context-free grammars and BNF
• Syntax diagrams

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 5

A sentence is a string of characters over some
alphabet.

A language is a set of sentences.

A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin).

A token is a category of lexemes (e.g., identifier).

Formal approaches to describing syntax:
1. Recognizers - used in compilers

2. Generators - what we'll study

Introduction

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 6

Lexical Structure of
Programming Languages

• The structure of its lexemes (words or tokens)
– token is a category of lexeme

• The scanning phase (lexical analyser) collects characters
into tokens

• Parsing phase(syntactic analyser)determines syntactic
structure

Stream of
characters

Result of
parsing

tokens and
values

lexical
analyser

Syntactic
analyser

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 7

Grammars
Context-Free Grammars

•Developed by Noam Chomsky in the mid-
1950s.

•Language generators, meant to describe the
syntax of natural languages.

•Define a class of languages called context-free
languages.

Backus Normal/Naur Form (1959)
•Invented by John Backus to describe Algol 58

and refined by Peter Naur for Algol 60.
•BNF is equivalent to context-free grammars

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 8

A metalanguage is a language used to describe
another language.

In BNF, abstractions are used to represent
classes of syntactic structures--they act like
syntactic variables (also called nonterminal
symbols), e.g.

<while_stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while
statement

BNF (continued)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 9

BNF
•A rule has a left-hand side (LHS) which is a single

non-terminal symbol and a right-hand side (RHS),
one or more terminal or nonterminal symbols.

•A grammar is a finite nonempty set of rules
•A non-terminal symbol is “defined” by one or more

rules.
•Multiple rules can be combined with the | symbol so

that
<stmts> ::= <stmt>
<stmts> ::= <stmnt> ; <stmnts>

And this rule are equivalent

<stmts> ::= <stmt> | <stmnt> ; <stmnts>
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 10

Syntactic lists are described in BNF using
recursion
<ident_list> -> ident

| ident, <ident_list>

A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal symbols)

BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 11

BNF Example

Here is an example of a simple grammar for a subset of English.
A sentence is noun phrase and verb phrase followed by a
period.

<sentence> ::= <noun-phrase><verb-phrase>.
<noun-phrase> ::= <article><noun>
<article> ::= a | the
<noun> ::= man | apple | worm | penguin
<verb-phrase> ::= <verb> | <verb><noun-phrase>
<verb> ::= eats | throws | sees | is

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 12

Derivation using BNF

<sentence> -> <noun-phrase><verb-phrase>.
<article><noun><verb_phrase>.
the<noun><verb_phrase>.
the man <verb_phrase>.
the man <verb><noun-phrase>.
the man eats <noun-phrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 13

Another BNF Example
<program> -> <stmts>
<stmts> -> <stmt>

| <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a derivation:

<program> => <stmts> => <stmt>
=> <var> = <expr> => a = <expr>
=> a = <term> + <term>
=> a = <var> + <term>
=> a = b + <term>
=> a = b + const

Note: There is some
variation in notation
for BNF grammars.
Here we are using ->
in the rules instead
of ::= .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 14

Every string of symbols in the derivation is
a sentential form.

A sentence is a sentential form that has only
terminal symbols.

A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded.

A derivation may be neither leftmost nor
rightmost (or something else)

Derivation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 15

Parse Tree

<program>

<stmts>

<stmt>

<var> = <expr>

a <term> + <term>

<var> const

b

A parse tree is a hierarchical representation of
a derivation

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 16

Another Parse Tree

<sentence>

<noun-phrase> <verb_phrase>

<article> <noun> <verb> <noun-phrase>

<article> <noun>
the man eats

the apple

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 17

A grammar is ambiguous iff it generates a
sentential form that has two or more
distinct parse trees.

Ambiguous grammars are, in general, very
undesirable in formal languages.

We can eliminate ambiguity by revising
the grammar.

Grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 18

Grammar
Here is a simple grammar for expressions that is
ambiguous

<expr> -> <expr> <op> <expr>
<expr> -> int
<op> -> +|-|*|/

The sentence 1+2*3 can lead to two different parse trees
corresponding to 1+(2*3) and (1+2)*3

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 19

If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

<expr>

<expr> - <term>

<term> <term> / const

const const

Grammar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 20

Grammar (continued)
<expr> => <expr> - <term> => <term> - <term>

=> const - <term>
=> const - <term> / const
=> const - const / const

Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr>

<expr> + const

<expr> + const

const

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 21

An Expression Grammar

Here’s a grammar to define simple arithmetic expressions
over variables and numbers.

Exp ::= num
Exp ::= id
Exp ::= UnOp Exp
Exp := Exp BinOp Exp
Exp ::= '(' Exp ')'

UnOp ::= '+'
UnOp ::= '-'
BinOp ::= '+' | '-' | '*' | '/'

Here’s another common
notation variant where
single quotes are used to
indicate terminal
symbols and unquoted
symbols are taken as
non-terminals.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 22

A derivation

Here’s a derivation of a+b*2 using the expression grammar:

Exp => // Exp ::= Exp BinOp Exp
Exp BinOp Exp => // Exp ::= id
id BinOp Exp => // BinOp ::= '+'
id + Exp => // Exp ::= Exp BinOp Exp
id + Exp BinOp Exp => // Exp ::= num
id + Exp BinOp num => // Exp ::= id
id + id BinOp num => // BinOp ::= '*'
id + id * num
a + b * 2

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 23

A parse tree

A parse tree for a+b*2:

__Exp__
/ | \

Exp BinOp Exp
| | / | \

identifier + Exp BinOp Exp
| | |

identifier * number

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 24

Precedence

Precedence refers to the order in which operations are evaluated. The
convention is: exponents, mult div, add sub.

• Deal with operations in categories: exponents, mulops, addops.
Here’s a revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp
Exp ::= Term
Term ::= Term MulOp Term
Term ::= Factor
Factor ::= '(' + Exp + ')‘
Factor ::= num | id
AddOp ::= '+' | '-’
MulOp ::= '*' | '/'

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 25

Associativity

Associativity refers to the order in which 2 of the same
operation should be computed

– 3+4+5 = (3+4)+5, left associative (all BinOps)
– 3^4^5 = 3^(4^5), right associative
– 'if x then if x then y else y' = 'if x then (if x then y else y)', else associates

with closest unmatched if (matched if has an else)

Adding associativity to the BinOp expression grammar

Exp ::= Exp AddOp Term
Exp ::= Term
Term ::= Term MulOp Factor
Term ::= Factor
Factor ::= '(' Exp ')'
Factor ::= num | id
AddOp ::= '+' | '-'
MulOp ::= '*' | '/'

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 26

Another example: conditionals
• Goal: to create a correct grammar for conditionals.
• It needs to be non-ambiguous and the precedence is else

with nearest unmatched if.
Statement ::= Conditional | 'whatever'
Conditional ::= 'if' test 'then' Statement 'else' Statement
Conditional ::= 'if' test 'then' Statement

• The grammar is ambiguous. The 1st Conditional allows
unmatched 'if's to be Conditionals.
if test then (if test then whatever else whatever) = correct
if test then (if test then whatever) else whatever = incorrect

• The final unambiguous grammar.
Statement ::= Matched | Unmatched
Matched ::= 'if' test 'then' Matched 'else' Matched | 'whatever'
Unmatched ::= 'if' test 'then' Statement

| 'if' test 'then' Matched else Unmatched

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 27

Syntactic sugar: doesn’t extend the expressive power of the
formalism, but does make it easier to use.

Optional parts are placed in brackets ([])

<proc_call> -> ident [(<expr_list>)]

Put alternative parts of RHSs in parentheses and
separate them with vertical bars

<term> -> <term> (+ | -) const

Put repetitions (0 or more) in braces ({})

<ident> -> letter {letter | digit}

Extended BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 28

BNF:
<expr> -> <expr> + <term>

| <expr> - <term>

| <term>

<term> -> <term> * <factor>

| <term> / <factor>

| <factor>

EBNF:
<expr> -> <term> {(+ | -) <term>}

<term> -> <factor> {(* | /) <factor>}

BNF

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 29

Syntax Graphs
Syntax Graphs - Put the terminals in circles or ellipses
and put the nonterminals in rectangles; connect with
lines with arrowheads

e.g., Pascal type declarations

..

type_identifier
(identifier)

,
constant constant

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 30

Parsing

• A grammar describes the strings of tokens that are
syntactically legal in a PL

• A recogniser simply accepts or rejects strings.
• A parser construct a derivation or parse tree.
• Two common types of parsers:

– bottom-up or data driven
– top-down or hypothesis driven

• A recursive descent parser traces is a way to
implement a top-down parser that is particularly
simple.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 31

•Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

•The recursive descent parsing subprograms
are built directly from the grammar rules

•Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Recursive Decent Parsing

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 32

Recursive Decent Parsing Example
Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (this one is
written in C)

void term() {
factor(); /* parse first factor*/
while (next_token == ast_code ||

next_token == slash_code) {
lexical(); /* get next token */
factor(); /* parse next factor */

}
}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 33

SemanticsSemantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 34

Semantics Overview
•Syntax is about “form” and semantics about

“meaning”.
•The boundary between syntax and semantics is

not always clear.
•First we’ll look at issues close to the syntax end,

what Sebesta calls “static semantics”, and the
technique of attribute grammars.

•Then we’ll sketch three approaches to defining
“deeper” semantics
– Operational semantics
– Axiomatic semantics
– Denotational semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 35

Static semantics covers some language features that
are difficult or impossible to handle in a
BNF/CFG.

It is also a mechanism for building a parser which
produces a “abstract syntax tree” of it’s input.

Categories attribute grammars can handle:

•Context-free but cumbersome (e.g. type
checking)

•Noncontext-free (e.g. variables must be
declared before they are used)

Static Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 36

Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)
•CFGs cannot describe all of the syntax

of programming languages
•Additions to CFGs to carry some

“semantic” info along through parse
trees

Primary value of AGs:
•Static semantics specification
•Compiler design (static semantics checking)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 37

Attribute Grammar Example

In Ada we have the following rule to describe prodecure
definitions:

<proc> -> procedure <procName> <procBody> end <procName> ;

But, of course, the name after “procedure” has to be the same
as the name after “end”.

This is not possible to capture in a CFG (in practice) because
there are too many names.

Solution: associate simple attributes with nodes in the parse
tree and add a “semantic” rules or constraints to the
syntactic rule in the grammar.

<proc> -> procedure <procName>[1] <procBody> end <procName>[2] ;
<procName][1].string = <procName>[2].string

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 38

Attribute Grammars

Def: An attribute grammar is a CFG
G=(S,N,T,P)

with the following additions:
– For each grammar symbol x there is a set A(x) of

attribute values.
– Each rule has a set of functions that define certain

attributes of the nonterminals in the rule.
– Each rule has a (possibly empty) set of predicates to

check for attribute consistency

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 39

Attribute Grammars

Let X0 -> X1 ... Xn be a rule.

Functions of the form S(X0) = f(A(X1), ... A(Xn))
define synthesized attributes

Functions of the form I(Xj) = f(A(X0), ... , A(Xn)) for i
<= j <= n define inherited attributes

Initially, there are intrinsic attributes on the leaves

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 40

Example: expressions of the form id + id
•id's can be either int_type or real_type

•types of the two id's must be the same

•type of the expression must match it's expected type

BNF: <expr> -> <var> + <var>
<var> -> id

Attributes:

actual_type - synthesized for <var> and <expr>

expected_type - inherited for <expr>

Attribute Grammars

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 41

Attribute Grammars
Attribute Grammar:

1. Syntax rule: <expr> -> <var>[1] + <var>[2]
Semantic rules:

<expr>.actual_type ← <var>[1].actual_type
Predicate:

<var>[1].actual_type = <var>[2].actual_type
<expr>.expected_type = <expr>.actual_type

2. Syntax rule: <var> -> id
Semantic rule:
<var>.actual_type ← lookup (id, <var>)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 42

How are attribute values computed?

•If all attributes were inherited, the tree
could be decorated in top-down order.

•If all attributes were synthesized, the tree
could be decorated in bottom-up order.

•In many cases, both kinds of attributes are
used, and it is some combination of top-
down and bottom-up that must be used.

Attribute Grammars (continued)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 43

Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A, <var>[1])
<var>[2].actual_type ← lookup (B, <var>[2])
<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type
<expr>.actual_type =? <expr>.expected_type

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 44

No single widely acceptable notation or formalism
for describing semantics.

The general approach to defining the semantics of
any language L is to specify a general mechanism
to translate any sentence in L into a set of
sentences in another language or system that we
take to be well defined.

Here are three approaches we’ll briefly look at:
– Operational semantics
– Axiomatic semantics
– Denotational semantics

Dynamic Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 45

Operational Semantics
• Idea: describe the meaning of a program in language L

by specifying how statements effect the state of a
machine, (simulated or actual) when executed.

• The change in the state of the machine (memory,
registers, stack, heap, etc.) defines the meaning of the
statement.

• Similar in spirit to the notion of a Turing Machine and
also used informally to explain higher-level constructs in
terms of simpler ones, as in:

c statement operational semantics

for(e1;e2;e3) e1;
{<body>} loop: if e2=0 goto exit

<body>
e3;
goto loop

exit:
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 46

Operational Semantics

•To use operational semantics for a high-level
language, a virtual machine in needed

•A hardware pure interpreter would be too
expensive

•A software pure interpreter also has problems:
•The detailed characteristics of the particular
•computer would make actions difficult to

understand
•Such a semantic definition would be

machine-dependent

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 47

Operational Semantics

A better alternative: A complete computer
simulation
• Build a translator (translates source code to the machine

code of an idealized computer)

• Build a simulator for the idealized computer

Evaluation of operational semantics:
• Good if used informally

• Extremely complex if used formally (e.g. VDL)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 48

Vienna Definition Language

• VDL was a language developed at IBM Vienna Labs as a
language for formal, algebraic definition via operational
semantics.

• It was used to specify the semantics of PL/I.
• See: The Vienna Definition Language, P. Wegner, ACM

Comp Surveys 4(1):5-63 (Mar 1972)
• The VDL specification of PL/I was very large, very

complicated, a remarkable technical accomplishment, and
of little practical use.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 49

Axiomatic Semantics

•Based on formal logic (first order predicate calculus)
•Original purpose: formal program verification
•Approach: Define axioms and inference rules in logic

for each statement type in the language (to allow
transformations of expressions to other expressions)

•The expressions are called assertions and are either
•Preconditions: An assertion before a statement

states the relationships and constraints among
variables that are true at that point in execution

•Postconditions: An assertion following a
statement

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 50

Logic 101
Propositional logic:

Logical constants: true, false
Propositional symbols: P, Q, S, ... that are either true or false
Logical connectives: ∧ (and) , ∨ (or), ⇒ (implies), ⇔ (is equivalent), ¬ (not)

which are defined by the truth tables below.
Sentences are formed by combining propositional symbols, connectives and

parentheses and are either true or false. e.g.: P∧ Q ⇔ ¬ (¬ P ∨ ¬ Q)
First order logic adds

Variables which can range over objects in the domain of discourse
Quantifiers including: ∀ (forall) and ∃(there exists)
Example sentences:

(∀ p) (∀ q) p∧ q ⇔ ¬ (¬ p ∨ ¬ q)
∀ x prime(x) ⇒ ∃y prime(y) ∧ y>x

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 51

•A weakest precondition is the least restrictive
precondition that will guarantee the postcondition

Notation:

{P} Statement {Q}
precondition postcondition

Example:

{?} a := b + 1 {a > 1}

We often need to infer what the precondition must be for a
given postcondition

One possible precondition: {b > 10}

Weakest precondition: {b > 0}

Axiomatic Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 52

Axiomatic Semantics

Program proof process:
•The postcondition for the whole program

is the desired results.
•Work back through the program to the

first statement.
•If the precondition on the first statement is

the same as the program spec, the program
is correct.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 53

Example: Assignment Statements

Here’s how we might define a simple
assignment statement of the form x := e in a
programming language.
•{Qx->E} x := E {Q}
•Where Qx->E means the result of replacing

all occurrences of x with E in Q
So from

{Q} a := b/2-1 {a<10}
We can infer that the weakest precondition Q

is
b/2-1<10 or b<22

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 54

•The Rule of Consequence:

{P} S {Q}, P’ => P, Q => Q’
{P'} S {Q'}

•An inference rule for sequences

•For a sequence S1;S2:
{P1} S1 {P2}
{P2} S2 {P3}

the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}
{P1} S1; S2 {P3}

Axiomatic Semantics

A notation from
symbolic logic for
specifying a rule of
inference with premise
P and consequence Q
is

P
Q

For example, Modus
Ponens can be
specified as:

P, P=>Q
Q

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 55

Conditions

Here’s a rule for a conditional statement
{B ∧ P} S1 {Q}, {¬ Β ∧ P} S2 {Q}

{P} if B then S1 else S2 {Q}

And an example of it’s use for the statement
{P} if x>0 then y=y-1 else y=y+1 {y>0}

So the weakest precondition P can be deduced as follows:
The postcondition of S1 and S2 is Q.

The weakest precondition of S1 is x>0 ∧ y>1 and for S2 is x>0 ∧ y>-1

The rule of consequence and the fact that y>1 ⇒ y>-1supports the
conclusion

That the weakest precondition for the entire conditional is y>1 .

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 56

Loops
For the loop construct {P} while B do S end {Q}
the inference rule is:

{I ∧ B} S {I} _
{I} while B do S {I ∧ ¬ B}

where I is the loop invariant, a proposition
necessarily true throughout the loop’s execution.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 57

A loop invariant I must meet the following conditions:
1. P => I (the loop invariant must be true initially)

2. {I} B {I} (evaluation of the Boolean must not change the validity of I)

3. {I and B} S {I} (I is not changed by executing the body of the loop)

4. (I and (not B)) => Q (if I is true and B is false, Q is implied)

5. The loop terminates (this can be difficult to prove)

• The loop invariant I is a weakened version of the loop
postcondition, and it is also a precondition.

• I must be weak enough to be satisfied prior to the beginning of
the loop, but when combined with the loop exit condition, it
must be strong enough to force the truth of the postcondition

Loop Invariants

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 58

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of the
statements in a language is difficult

• It is a good tool for correctness proofs, and an
excellent framework for reasoning about programs

• It is much less useful for language users and compiler
writers

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 59

•A technique for describing the meaning of
programs in terms of mathematical functions on
programs and program components.

•Programs are translated into functions about
which properties can be proved using the standard
mathematical theory of functions, and especially
domain theory.

•Originally developed by Scott and Strachey
(1970) and based on recursive function theory

•The most abstract semantics description method

Denotational Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 60

Denotational Semantics

•The process of building a denotational
specification for a language:
1. Define a mathematical object for each

language entity
2. Define a function that maps instances of the

language entities onto instances of the
corresponding mathematical objects

•The meaning of language constructs are defined
by only the values of the program's variables

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 61

The difference between denotational and operational
semantics: In operational semantics, the state changes are
defined by coded algorithms; in denotational semantics,
they are defined by rigorous mathematical functions

• The state of a program is the values of all its current
variables

s = {<i1, v1>, <i2, v2>, … , <in, vn>}

• Let VARMAP be a function that, when given a variable
name and a state, returns the current value of the variable

VARMAP(ij, s) = vj

Denotational Semantics (continued)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 62

Example: Decimal Numbers

<dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| <dec_num> (0|1|2|3|4|5|6|7|8|9)

Mdec('0') = 0, Mdec ('1') = 1, … , Mdec ('9') = 9
Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)
Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 63

Expressions
Me(<expr>, s) ∆=

case <expr> of
<dec_num> => Mdec(<dec_num>, s)
<var> =>

if VARMAP(<var>, s) = undef
then error
else VARMAP(<var>, s)

<binary_expr> =>
if (Me(<binary_expr>.<left_expr>, s) = undef

OR Me(<binary_expr>.<right_expr>, s) =
undef)

then error
else

if (<binary_expr>.<operator> = ‘+’ then
Me(<binary_expr>.<left_expr>, s) +

Me(<binary_expr>.<right_expr>, s)
else Me(<binary_expr>.<left_expr>, s) *

Me(<binary_expr>.<right_expr>, s)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 64

Assignment Statements

Ma(x := E, s) ∆=
if Me(E, s) = error

then error
else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>},

where for j = 1, 2, ..., n,
vj’ = VARMAP(ij, s) if ij <> x

= Me(E, s) if ij = x

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 65

Ml(while B do L, s) ∆=

if Mb(B, s) = undef

then error

else if Mb(B, s) = false

then s

else if Msl(L, s) = error

then error

else Ml(while B do L, Msl(L, s))

Logical Pretest Loops

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 66

Logical Pretest Loops

•The meaning of the loop is the value of the
program variables after the statements in the loop
have been executed the prescribed number of
times, assuming there have been no errors

•In essence, the loop has been converted from
iteration to recursion, where the recursive control
is mathematically defined by other recursive state
mapping functions

•Recursion, when compared to iteration, is easier to
describe with mathematical rigor

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 67

Evaluation of denotational semantics:

•Can be used to prove the correctness of
programs

•Provides a rigorous way to think about
programs

•Can be an aid to language design

•Has been used in compiler generation
systems

Denotational Semantics

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc. 68

Summary

This chapter covered the following

•Backus-Naur Form and Context Free
Grammars

• Syntax Graphs and Attribute Grammars
• Semantic Descriptions: Operational,

Axiomatic and Denotational

