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Chapter 3Chapter 3
Describing Syntax 

and Semantics
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We usually break down the problem of defining a 
programming language into two parts.
•Defining the PL’s syntax
•Defining the PL’s semantics

Syntax - the form or structure of the expressions, 
statements, and program units

Semantics - the meaning of the expressions, 
statements, and program units.

Note: There is not always a clear boundary 
between the two.

Introduction
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Why and How

Why? We want specifications for several 
communities:
–Other language designers
•Implementors
•Programmers (the users of the language)

How?  One ways is via natural language descriptions 
(e.g., user’s manuals, text books) but there are a 
number of techniques for specifying the syntax and 
semantics that are more formal.
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Syntax Overview

• Language preliminaries
• Context-free grammars and BNF
• Syntax diagrams
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A sentence is a string of characters over some 
alphabet.

A language is a set of sentences.

A lexeme is the lowest level syntactic unit of a  
language (e.g., *, sum, begin).

A token is a category of lexemes (e.g., identifier).

Formal approaches to describing syntax:
1. Recognizers - used in compilers

2. Generators - what we'll study

Introduction
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Lexical Structure of 
Programming Languages

• The structure of its lexemes (words or tokens)
– token is a category of lexeme

• The scanning phase (lexical analyser) collects characters 
into tokens

• Parsing phase(syntactic analyser)determines syntactic 
structure

Stream of
characters

Result of 
parsing

tokens and 
values

lexical 
analyser

Syntactic 
analyser
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Grammars
Context-Free Grammars

•Developed by Noam Chomsky in the mid-
1950s.

•Language generators, meant to describe the 
syntax of natural languages.

•Define a class of languages called context-free 
languages.

Backus Normal/Naur Form (1959)
•Invented by John Backus to describe Algol 58 

and refined by Peter Naur for Algol 60.
•BNF is equivalent to context-free grammars
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A metalanguage is a language used to describe 
another language.

In BNF, abstractions are used to represent 
classes of syntactic structures--they act like 
syntactic variables (also called nonterminal 
symbols), e.g.

<while_stmt> ::= while <logic_expr> do <stmt>

This is a rule; it describes the structure of a while 
statement

BNF (continued)
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BNF 
•A rule has a left-hand side (LHS) which is a single 

non-terminal symbol and a right-hand side (RHS), 
one or more terminal or nonterminal symbols.

•A grammar is a finite nonempty set of rules
•A non-terminal symbol is “defined” by one or more 

rules.
•Multiple rules can be combined with the | symbol so 

that
<stmts> ::= <stmt>
<stmts> ::= <stmnt> ; <stmnts>

And this rule are equivalent

<stmts> ::= <stmt> | <stmnt> ; <stmnts>
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Syntactic lists are described in BNF using 
recursion 
<ident_list> -> ident

| ident, <ident_list>

A  derivation is a repeated application of 
rules, starting with the start symbol and 
ending with a sentence (all terminal symbols)

BNF
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BNF Example 

Here is an example of a simple grammar for a subset of English. 
A sentence is noun phrase and verb phrase followed by a 
period.

<sentence>    ::= <noun-phrase><verb-phrase>.
<noun-phrase> ::= <article><noun>
<article>     ::= a | the
<noun>        ::= man | apple | worm | penguin
<verb-phrase> ::= <verb> | <verb><noun-phrase>
<verb>        ::= eats | throws | sees | is
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Derivation using BNF

<sentence> -> <noun-phrase><verb-phrase>.
<article><noun><verb_phrase>.
the<noun><verb_phrase>.
the man <verb_phrase>.
the man <verb><noun-phrase>.
the man eats <noun-phrase>.
the man eats <article> < noun>.
the man eats the <noun>.
the man eats the apple.     
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Another BNF  Example
<program> -> <stmts>
<stmts> -> <stmt> 

| <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const
Here is a  derivation:

<program> => <stmts> => <stmt> 
=> <var> = <expr> => a = <expr> 
=> a = <term> + <term>
=> a = <var> + <term> 
=> a = b + <term>
=> a = b + const

Note: There is some 
variation in notation 
for BNF grammars.  
Here we are using ->
in the rules instead 
of ::= .
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Every string of symbols in the derivation is 
a sentential form.

A sentence is a sentential form that has only  
terminal symbols.

A leftmost derivation is one in which the 
leftmost nonterminal in each sentential form 
is the one that is expanded.

A derivation may be neither leftmost nor 
rightmost (or something else)

Derivation 
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Parse Tree

<program>

<stmts>

<stmt>

<var>  =     <expr>

a      <term>  +   <term>

<var>       const

b

A parse tree is a hierarchical representation of
a derivation
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Another Parse Tree

<sentence>

<noun-phrase> <verb_phrase>

<article> <noun> <verb> <noun-phrase> 

<article> <noun>
the man eats

the apple
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A grammar is ambiguous iff it generates a 
sentential form that has two or more 
distinct parse trees.

Ambiguous grammars are, in general, very 
undesirable in formal languages.

We can eliminate ambiguity by revising 
the grammar.

Grammar 
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Grammar
Here is a simple grammar for expressions that is 
ambiguous

<expr> -> <expr> <op> <expr>
<expr> -> int
<op> -> +|-|*|/

The sentence 1+2*3 can lead to two different parse trees 
corresponding to 1+(2*3) and (1+2)*3
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If we use the parse tree to indicate precedence 
levels of the operators, we cannot have 
ambiguity

An unambiguous expression grammar:
<expr> -> <expr> - <term>  |  <term>

<term> -> <term> / const  |  const

<expr>

<expr>     - <term>

<term>         <term>   /      const

const          const

Grammar
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Grammar (continued)
<expr> => <expr> - <term> => <term> - <term>

=> const - <term> 
=> const - <term> / const
=> const - const / const

Operator associativity can also be indicated by a 
grammar

<expr> -> <expr> + <expr>  |  const  (ambiguous)

<expr> -> <expr> + const  |  const  (unambiguous)

<expr>

<expr>        +     const

<expr> +  const

const
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An Expression Grammar

Here’s a  grammar to define simple arithmetic expressions 
over variables and numbers. 

Exp ::= num
Exp ::= id
Exp ::= UnOp Exp
Exp := Exp BinOp Exp
Exp ::= '(' Exp ')'

UnOp ::= '+'
UnOp ::= '-'
BinOp ::= '+' | '-' | '*' | '/'

Here’s another common 
notation variant where 
single quotes are used to 
indicate terminal 
symbols and unquoted 
symbols are taken as 
non-terminals.
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A derivation

Here’s a derivation of a+b*2 using the expression grammar: 

Exp =>                 // Exp ::= Exp BinOp Exp
Exp BinOp Exp =>      // Exp ::= id
id BinOp Exp =>       // BinOp ::= '+'
id + Exp =>           // Exp ::= Exp BinOp Exp
id + Exp BinOp Exp => // Exp ::= num
id + Exp BinOp num => // Exp ::= id
id + id BinOp num =>  // BinOp ::= '*'
id + id * num
a  + b  * 2
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A parse tree

A parse tree for a+b*2: 

__Exp__
/   |   \

Exp  BinOp   Exp
|     |   /  |    \

identifier + Exp BinOp Exp
|     |   |

identifier * number
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Precedence

Precedence refers to the order in which operations are evaluated.  The 
convention is: exponents, mult div, add sub. 

• Deal with operations in categories: exponents, mulops, addops. 
Here’s a revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp
Exp ::= Term
Term ::= Term MulOp Term
Term ::= Factor
Factor ::= '(' + Exp + ')‘
Factor ::= num | id
AddOp ::= '+' | '-’
MulOp ::= '*' | '/'
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Associativity

Associativity refers to the order in which 2 of the same 
operation should be computed 

– 3+4+5 = (3+4)+5, left associative (all BinOps) 
– 3^4^5 = 3^(4^5), right associative 
– 'if x then if x then y else y' = 'if x then (if x then y else y)',  else associates 

with closest unmatched if (matched if has an else) 

Adding associativity to the BinOp expression grammar

Exp    ::= Exp AddOp Term
Exp    ::= Term           
Term   ::= Term MulOp Factor
Term   ::= Factor           
Factor ::= '(' Exp ')'
Factor ::= num | id
AddOp  ::= '+' | '-'
MulOp  ::= '*' | '/'
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Another example: conditionals
• Goal: to create a correct grammar for conditionals. 
• It needs to be non-ambiguous and the precedence is else 

with nearest unmatched if. 
Statement    ::= Conditional | 'whatever'
Conditional ::= 'if' test 'then' Statement 'else' Statement
Conditional ::= 'if' test 'then' Statement

• The grammar is ambiguous. The 1st Conditional allows 
unmatched 'if's to be Conditionals. 
if test then (if test then whatever else whatever) = correct
if test then (if test then whatever) else whatever = incorrect

• The final unambiguous grammar.
Statement ::= Matched | Unmatched
Matched ::= 'if' test 'then' Matched 'else' Matched | 'whatever'
Unmatched ::= 'if' test 'then' Statement

| 'if' test 'then' Matched else Unmatched
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Syntactic sugar: doesn’t extend the expressive power of the 
formalism, but does make it easier to use.

Optional parts are placed in brackets ([])

<proc_call> -> ident [ ( <expr_list>)]

Put alternative parts of RHSs in parentheses and 
separate them with vertical bars  

<term> -> <term> (+ | -) const

Put repetitions (0 or more) in braces ({})

<ident> -> letter {letter | digit}

Extended BNF
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BNF:
<expr> -> <expr> + <term>

| <expr> - <term>

| <term>

<term> -> <term> * <factor>

| <term> / <factor>

| <factor>

EBNF:
<expr> -> <term> {(+ | -) <term>}

<term> -> <factor> {(* | /) <factor>}

BNF
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Syntax Graphs
Syntax Graphs - Put the terminals in circles or ellipses 
and put the nonterminals in rectangles; connect with 
lines with arrowheads

e.g., Pascal type declarations

..

type_identifier
( identifier )

,
constant constant
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Parsing 

• A grammar describes the strings of tokens that are 
syntactically legal in a PL

• A recogniser simply accepts or rejects strings. 
• A parser construct a derivation or parse tree.
• Two common types of parsers:

– bottom-up or data driven
– top-down or hypothesis driven

• A recursive descent parser traces is a way to 
implement a top-down parser that is particularly 
simple.
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•Each nonterminal in the grammar has a      
subprogram associated with it; the 
subprogram parses all sentential forms that 
the nonterminal can generate

•The recursive descent parsing subprograms 
are built directly from the grammar rules 

•Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Recursive Decent Parsing

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc. 32

Recursive Decent Parsing Example
Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (this one is 
written in C)

void term() { 
factor();     /* parse first factor*/
while (next_token == ast_code || 

next_token == slash_code) {
lexical();  /* get next token */
factor();   /* parse next factor */

}
} 
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SemanticsSemantics
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Semantics Overview
•Syntax is about “form” and semantics about 

“meaning”.
•The boundary between syntax and semantics is 

not always clear.
•First we’ll look at issues close to the syntax end, 

what Sebesta calls “static semantics”, and the 
technique of  attribute grammars.

•Then we’ll sketch three approaches to defining 
“deeper” semantics
– Operational semantics
– Axiomatic semantics
– Denotational semantics
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Static semantics  covers some language features that 
are difficult or impossible to handle in a 
BNF/CFG.

It is also a mechanism for building a parser which 
produces a “abstract syntax tree” of it’s input. 

Categories attribute grammars can handle:

•Context-free but cumbersome (e.g. type            
checking)

•Noncontext-free (e.g. variables must be            
declared before they are used)

Static Semantics
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Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)
•CFGs cannot describe all of the syntax 

of programming languages
•Additions to CFGs to carry some 

“semantic” info along through parse 
trees

Primary value of AGs:
•Static semantics specification
•Compiler design (static semantics checking)
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Attribute Grammar Example

In Ada we have the following rule to describe prodecure 
definitions:

<proc>  -> procedure <procName> <procBody> end <procName> ;

But, of course, the name after “procedure” has to be the same 
as the name after “end”.

This is not possible to capture in a CFG (in practice) because 
there are too many names.

Solution: associate simple attributes with nodes in the parse 
tree and add a “semantic” rules or constraints to the 
syntactic rule in the grammar.

<proc>  -> procedure <procName>[1] <procBody> end <procName>[2] ;
<procName][1].string = <procName>[2].string
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Attribute Grammars

Def: An attribute grammar is a CFG 
G=(S,N,T,P)

with the following additions:
– For each grammar symbol x there is a set A(x) of 

attribute values.
– Each rule has a set of functions that define certain 

attributes of the nonterminals in the rule.
– Each rule has a (possibly empty) set of predicates to 

check for attribute consistency
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Attribute Grammars

Let   X0 -> X1 ... Xn be a rule.

Functions of the form S(X0) = f(A(X1), ... A(Xn)) 
define synthesized attributes

Functions of the form I(Xj) = f(A(X0), ... , A(Xn)) for i 
<= j <= n define inherited attributes

Initially, there are intrinsic attributes on the leaves
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Example: expressions of the form  id + id
•id's can be either int_type or real_type

•types of the two id's must be the same

•type of the expression must match it's expected type

BNF: <expr> -> <var> + <var>
<var> -> id

Attributes:

actual_type - synthesized for <var> and <expr>

expected_type - inherited for <expr>

Attribute Grammars
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Attribute Grammars
Attribute Grammar:

1. Syntax rule:  <expr> -> <var>[1] + <var>[2]
Semantic rules: 

<expr>.actual_type ← <var>[1].actual_type
Predicate: 

<var>[1].actual_type = <var>[2].actual_type
<expr>.expected_type = <expr>.actual_type

2. Syntax rule: <var> -> id
Semantic rule:
<var>.actual_type ← lookup (id, <var>)
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How are attribute values computed?

•If all attributes were inherited, the tree 
could be decorated in top-down order.

•If all attributes were synthesized, the tree 
could be decorated in bottom-up order.

•In many cases, both kinds of attributes are 
used, and it is some combination of top-
down and bottom-up that must be used.

Attribute Grammars (continued)
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Attribute Grammars (continued)

<expr>.expected_type ← inherited from parent

<var>[1].actual_type ← lookup (A, <var>[1])
<var>[2].actual_type ← lookup (B, <var>[2])
<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type ← <var>[1].actual_type
<expr>.actual_type =? <expr>.expected_type
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No single widely acceptable notation or formalism 
for describing semantics.

The general approach to defining the semantics of 
any language L is to specify a general mechanism 
to translate any sentence in L into a set of 
sentences in another language or system that we 
take to be well defined.

Here are three approaches we’ll briefly look at:
– Operational semantics
– Axiomatic semantics
– Denotational semantics

Dynamic Semantics
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Operational Semantics
• Idea: describe the meaning of a program in language L 

by specifying how statements effect the state of a 
machine, (simulated or actual) when executed.

• The change in the state of the machine (memory, 
registers, stack, heap, etc.) defines the meaning of  the 
statement.

• Similar in spirit to the notion of a Turing Machine and 
also used informally to explain higher-level constructs in 
terms of simpler ones, as in:

c statement operational semantics

for(e1;e2;e3) e1;
{<body>} loop: if e2=0 goto exit

<body>
e3;
goto loop

exit:
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Operational Semantics

•To use operational semantics for a high-level 
language,  a virtual machine in needed

•A hardware pure interpreter would be too 
expensive

•A software pure interpreter also has problems:
•The detailed characteristics of the particular
•computer would make actions difficult to 

understand
•Such a semantic definition would be 

machine-dependent
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Operational Semantics

A better alternative: A complete computer 
simulation
• Build a translator (translates source code to the machine 

code of an idealized computer)

• Build a simulator for the idealized computer

Evaluation of operational semantics:
• Good if used informally

• Extremely complex if used formally (e.g. VDL)
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Vienna Definition Language

• VDL was a language developed at  IBM Vienna Labs as  a 
language for formal, algebraic definition via operational 
semantics. 

• It was used to specify the semantics of PL/I. 
• See: The Vienna Definition Language, P. Wegner, ACM 

Comp Surveys 4(1):5-63 (Mar 1972)
• The VDL specification of PL/I was very large, very 

complicated, a remarkable technical accomplishment, and 
of little practical use. 
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Axiomatic Semantics

•Based on formal logic (first order predicate calculus)
•Original purpose: formal program verification
•Approach: Define axioms and inference rules in logic 

for each statement type in the language (to allow 
transformations of expressions to other expressions)

•The expressions are called assertions and are either
•Preconditions: An assertion before a statement 

states the relationships and constraints among 
variables that are true at that point in execution

•Postconditions: An assertion following a 
statement
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Logic 101
Propositional logic:

Logical constants: true, false 
Propositional symbols: P, Q, S, ... that are either true or false
Logical connectives: ∧ (and) , ∨ (or), ⇒ (implies), ⇔ (is equivalent), ¬ (not)

which are defined by the truth tables below.
Sentences are formed by combining propositional symbols, connectives and 

parentheses and are either true or false. e.g.: P∧ Q ⇔ ¬ (¬ P ∨ ¬ Q)
First order logic adds

Variables which can range over objects in the domain of discourse
Quantifiers including:  ∀ (forall) and ∃(there exists)
Example sentences: 

(∀ p) (∀ q) p∧ q ⇔ ¬ (¬ p ∨ ¬ q)
∀ x prime(x) ⇒ ∃y prime(y) ∧ y>x
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•A weakest precondition is the least restrictive 
precondition that will guarantee the postcondition

Notation:  

{P} Statement {Q}
precondition               postcondition

Example:

{?} a := b + 1  {a > 1}

We often need to infer what the precondition must be for a 
given postcondition

One possible precondition: {b > 10}

Weakest precondition: {b > 0}

Axiomatic Semantics
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Axiomatic Semantics

Program proof process:
•The postcondition for the whole program 

is the desired results.  
•Work back through the program to the 

first statement.  
•If the precondition on the first statement is 

the same as the program spec, the program 
is correct.
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Example: Assignment Statements

Here’s how we might define a simple 
assignment statement of the form x := e in a 
programming language. 
•{Qx->E} x := E {Q}
•Where Qx->E means the result of replacing 

all occurrences of x with E in Q
So from

{Q} a := b/2-1 {a<10}
We can infer that the weakest precondition Q 

is
b/2-1<10 or b<22 
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•The Rule of Consequence:

{P} S {Q},  P’ => P,  Q => Q’
{P'} S {Q'}

•An inference rule for sequences

•For a sequence S1;S2:
{P1} S1 {P2}
{P2} S2 {P3}

the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}
{P1} S1; S2 {P3}

Axiomatic Semantics

A notation from 
symbolic logic for 
specifying a rule of 
inference with premise 
P and consequence Q 
is 

P
Q

For example, Modus 
Ponens can be 
specified as:

P, P=>Q
Q
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Conditions

Here’s a rule for a conditional statement
{B ∧ P} S1 {Q}, {¬ Β ∧ P} S2 {Q}

{P} if B then S1 else S2 {Q}

And an example of it’s use for the statement
{P} if x>0 then y=y-1 else y=y+1 {y>0}

So the weakest precondition P can be deduced as follows:
The postcondition of S1 and S2 is Q.

The weakest precondition of S1 is x>0 ∧ y>1 and for S2 is x>0 ∧ y>-1

The rule of consequence and the fact that y>1 ⇒ y>-1supports the 
conclusion

That the weakest precondition for the entire conditional is y>1 .
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Loops 
For the loop construct {P} while B do S end {Q}
the inference rule is:

{I ∧ B}  S   {I}           _ 
{I} while B do S {I ∧ ¬ B}

where I is the loop invariant, a proposition 
necessarily true throughout the loop’s execution.
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A loop invariant I must meet the following conditions:
1. P => I    (the loop invariant must be true initially) 

2. {I} B {I}    (evaluation of the Boolean must not change the validity of I)

3. {I and B} S {I}    (I is not changed by executing the body of the loop)

4. (I and (not B)) => Q     (if I is true and B is false, Q is implied)

5. The loop terminates     (this can be difficult to prove)

• The loop invariant I is a weakened version of the  loop 
postcondition, and it is also a precondition.

• I must be weak enough to be satisfied prior to the beginning of 
the loop, but when combined with the loop exit condition, it 
must be strong enough to force the truth of the postcondition

Loop Invariants
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Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of  the 
statements in a language is difficult

• It is a good tool for correctness proofs, and an 
excellent framework for reasoning about programs

• It is much less useful for language users and compiler 
writers
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•A technique for describing the meaning of 
programs in terms of mathematical functions on 
programs and program components. 

•Programs are translated into functions about 
which properties can be proved using the standard 
mathematical theory of functions, and especially 
domain theory. 

•Originally developed by Scott and Strachey 
(1970) and based on recursive function theory

•The most abstract semantics description method

Denotational Semantics
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Denotational Semantics

•The process of building a denotational 
specification for a language:
1. Define a mathematical object for each 

language entity
2. Define a function that maps instances of the 

language entities onto instances of the 
corresponding mathematical objects

•The meaning of language constructs are defined 
by only the values of the program's variables
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The difference between denotational and operational 
semantics: In operational semantics, the state changes are 
defined by coded algorithms; in denotational semantics, 
they are defined by rigorous mathematical functions

• The state of a program is the values of all its current 
variables

s = {<i1, v1>, <i2, v2>, … , <in, vn>}

• Let VARMAP be a function that, when given a variable 
name and a state, returns the current value of the variable

VARMAP(ij, s) = vj

Denotational Semantics (continued)
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Example: Decimal Numbers

<dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| <dec_num> (0|1|2|3|4|5|6|7|8|9)

Mdec('0') = 0,  Mdec ('1') = 1, … ,  Mdec ('9') = 9
Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)
Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9
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Expressions
Me(<expr>, s) ∆=

case <expr> of
<dec_num> => Mdec(<dec_num>, s)
<var> => 

if VARMAP(<var>, s) = undef
then error
else VARMAP(<var>, s)

<binary_expr> => 
if (Me(<binary_expr>.<left_expr>, s) = undef

OR Me(<binary_expr>.<right_expr>, s) =
undef)

then error
else

if (<binary_expr>.<operator> = ‘+’ then
Me(<binary_expr>.<left_expr>, s) + 

Me(<binary_expr>.<right_expr>, s)
else Me(<binary_expr>.<left_expr>, s) * 

Me(<binary_expr>.<right_expr>, s)

CMSC 331, Some material  © 1998 by Addison Wesley Longman, Inc. 64

Assignment Statements

Ma(x := E, s) ∆=
if Me(E, s) = error

then error
else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>},

where for j = 1, 2, ..., n,
vj’ = VARMAP(ij, s) if ij <> x

= Me(E, s) if ij = x
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Ml(while B do L, s) ∆=

if Mb(B, s) = undef

then error

else if Mb(B, s) = false

then s

else if Msl(L, s) = error

then error

else Ml(while B do L, Msl(L, s))

Logical Pretest Loops
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Logical Pretest Loops

•The meaning of the loop is the value of the    
program variables after the statements in the loop   
have been executed the prescribed number of    
times, assuming there have been no errors

•In essence, the loop has been converted from 
iteration to recursion, where the recursive control   
is mathematically defined by other recursive state  
mapping functions

•Recursion, when compared to iteration, is easier to 
describe with mathematical rigor
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Evaluation of denotational semantics:

•Can be used to prove the correctness of 
programs

•Provides a rigorous way to think about 
programs

•Can be an aid to language design

•Has been used in compiler generation 
systems

Denotational Semantics
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Summary

This chapter covered the following

•Backus-Naur Form and Context Free 
Grammars

• Syntax Graphs and Attribute Grammars
• Semantic Descriptions: Operational, 

Axiomatic and Denotational


