
Copyright © 1998 by Addison Wesley Longman, Inc. 1

Chapter One

Preliminaries, including
–Why study PL concepts?
–Programming domains
–PL evaluation criteria
–What influences PL design?
–Tradeoffs faced by programming languages
–Implementation methods
–Programming environments

Copyright © 1998 by Addison Wesley Longman, Inc. 2

Why study Programming
Language Concepts?

• Increased capacity to express programming
concepts

• Improved background for choosing
appropriate languages

• Increased ability to learn new languages
• Understanding the significance of

implementation
• Increased ability to design new languages
• Overall advancement of computing

Copyright © 1998 by Addison Wesley Longman, Inc. 3

Programming Domains

•Scientific applications
•Business applications
•Artificial intelligence
•Systems programming
•Scripting languages
•Special purpose languages

Copyright © 1998 by Addison Wesley Longman, Inc. 4

Language Evaluation Criteria

•Readability
•Writability
•Reliability
•Cost
•Etc…

Copyright © 1998 by Addison Wesley Longman, Inc. 5

Evaluation Criteria: Readability
How is it for one to read and understand programs

written in the PL?
Arguably the most important criterion!
Factors effecting readability include:

–Overall simplicity
» Too many features is bad as is a multiplicity

of features
–Orthogonality

» Makes the language easy to learn and read
» Meaning is context independent

–Control statements
–Data type and structures
–Syntax considerations

Copyright © 1998 by Addison Wesley Longman, Inc. 6

Evaluation Criteria: Writability

How easy is it to write programs in the
language?

Factors effecting writability:
–Simplicity and orthogonality
–Support for abstraction
–Expressivity
–Fit for the domain and problem

Copyright © 1998 by Addison Wesley Longman, Inc. 7

Evaluation Criteria: Reliability

Factors:
- Type checking
- Exception handling
- Aliasing
- Readability and writability

Copyright © 1998 by Addison Wesley Longman, Inc. 8

Evaluation Criteria: Cost

Categories:
–Programmer training
–Software creation
–Compilation
–Execution
–Compiler cost
–Poor reliability
–Maintenance

Copyright © 1998 by Addison Wesley Longman, Inc. 9

Evaluation Criteria: others

Portability
Generality
Well-definedness
Etc…

Copyright © 1998 by Addison Wesley Longman, Inc. 10

Language Design Influences
Computer architecture

- We use imperative languages, at least in part,
because we use von Neumann machines
- John von Neuman is generally considered to be

the inventor of the "stored program" machines -
the class to which most of today's computers
belong.

- CPU+memory which contains both program
and data

- Focus on moving data and program instructions
between registers in CPU to memory locations

Copyright © 1998 by Addison Wesley Longman, Inc. 11

Language Design Influences:
Programming methodologies

• 50s and early 60s: Simple applications;
worry about machine efficiency

• Late 60s: People efficiency became
important; readability, better control
structures. maintainability

• Late 70s: Data abstraction
• Middle 80s: Object-oriented programming
• 95-today: distributed programs, the web

Copyright © 1998 by Addison Wesley Longman, Inc. 12

Language Categories
The big four:

Imperative or procedural (e.g., Fortran, C)
Functional (e.g., Lisp, ML)
Rule based (e.g. Prolog)
Object-oriented (e.g. Smalltalk, Java)

Others:
Scripting (e.g., Perl, Tcl/Tk)
Constraint (e.g., Eclipse)

Copyright © 1998 by Addison Wesley Longman, Inc. 13

Language Design Trade-offs

Reliability versus cost of execution
Ada, unlike C, checks all array indices to ensure
proper range.

Writability versus readability
(2 = 0 +.= T o.| T) / T <- iN is an APL one liner
that produces a list of the prime numbers from 1
to N inclusive.

Flexibility versus safety
C, unlike Java, allows one to do arithmetic
on pointers.

Copyright © 1998 by Addison Wesley Longman, Inc. 14

Implementation methods
• Direct execution by hardware

– E.g., machine language

• Compilation to another language
– e.g., C

• Interpretation
– Direct execution by software
– E.g., csh, Lisp (traditionally)

• Hybrid
– Compilation to another language (aka bytecode) which

is then interpreted
– e.g., Java, Perl

Copyright © 1998 by Addison Wesley Longman, Inc. 15

Implementation issues
•Complexity of compiler/interpreter
•Speed of translation
•Speed of execution
•Portability of translated code
•Compactness of translated code
•Debugging ease

compile interprethybrid

Copyright © 1998 by Addison Wesley Longman, Inc. 16

Programming Environments

The collection of tools used in software
development, often including an integrated
editor, debugger, compiler, collaboration tool,
etc.
Examples:
– UNIX -- Operating system with tool collection
– EMACS – a highly programmable text editor
– Borland C++ -- A PC environment for C and C++
– Smalltalk -- A language processor/environment
– Microsoft Visual C++ -- A large, complex visual

environment
– Your favorite Java environment: Jbuilder, J++, …

Copyright © 1998 by Addison Wesley Longman, Inc. 17

Summary

