
CMSC 313, Spring 2011
Project 5: Defusing a Binary Bomb

Assigned: April, April. 6
Due: Sunday, April. 24, 11:59PM

1 Introduction

The nefariousDr. Evil has planted a slew of “binary bombs” on our machines. A binarybomb is a program
that consists of a sequence of phases. Each phase expects youto type a particular string onstdin. If you
type the correct string, then the phase isdefused and the bomb proceeds to the next phase. Otherwise, the
bombexplodes by printing "BOOM!!!" and then terminating. The bomb is defused when every phase has
been defused.

There are too many bombs for us to deal with, so we are giving each group a bomb to defuse. Your mission,
which you have no choice but to accept, is to defuse your bomb before the due date. Good luck, and
welcome to the bomb squad!

Step 1: Get Your Bomb

Each group of students will attempt to defuse their own personalized bomb. Each bomb is a Linux binary
executable file that has been compiled from a C program. To obtain your group’s bomb, one (and only one)
of the group members should point your Web browser to the bombrequest daemon at

http://ite209-pc-01.cs.umbc.edu:2468

Because of UMBC internet security, you may only access the bomb request daemon from inside UMBC’s
firewall – from a workstation in an on-campus lab, from your PCon resnet, or by logging into to your
GL account from home. If you log on to GL from your home or dorm room (using Putty or TeraTerm for
example) you can use the text-based web browser namedlynx to access the URL above.

Fill out the HTML form with the email addresses and names of your team members, and then submit the
form by clicking the “Submit” button. The request daemon will build your bomb and return it immediately
to your browser in atar file calledbombk.tar , wherek is the unique number of your bomb.

Save thebombk.tar file to a (protected) directory in which you plan to do your work. Then give the
command:tar xvf bombk.tar . This will create a directory called./bombk with the following files:

1



• README: Identifies the bomb and its owners.

• bomb: The executable binary bomb.

• bomb.c : Source file with the bomb’s main routine.

If you change groups, send an email to your instructor and request another bomb. We’ll sort out the duplicate
assignments later on when we grade the project.

Also, if you make any kind of mistake requesting a bomb (such as neglecting to save it or typing the wrong
group members), simply request another bomb.

Step 2: Defuse Your Bomb

You can use many tools to help you with this; please look at thehints section for some tips and ideas. The
best way is to use your favorite debugger to step through the disassembled binary.

Each time your bomb explodes it notifies the staff, and you lose 1/4 point (up to a max of 10 points) in the
final score for the project. So there are consequences to exploding the bomb. You must be careful!

Each bomb phase is worth 15 points, for a total of 90 points. Each bomb phase tests a different aspect of
machine language programs:

• Phase 1: comparison

• Phase 2: loops

• Phase 3: conditionals/switches

• Phase 4: recursive calls and the stack discipline

• Phase 5: arrays and indicies

• Phase 6: linked lists/pointers/structs

The phases get progressively harder to defuse, but the expertise you gain as you move from phase to phase
should offset this difficulty. However, the last phase will challenge even the best students, so please don’t
wait until the last minute to start.

Each bomb phase is defused by inputing an appropriate string. If you input the wrong string for a phase, the
bomb explodes. The bomb ignores blank input lines.

If you run your bomb with a command line argument, for example,

linux> ./bomb bob.txt

then it will read the input lines frombob.txt until it reaches EOF (end of file), and then switch over
to stdin . In a moment of weakness, Dr. Evil added this feature so you don’t have to keep retyping the
solutions to phases you have already defused.

2



To avoid accidently detonating the bomb, you will need to learn how to single-step through the assembly
code and how to set breakpoints. You will also need to learn how to inspect both the registers and the
memory states. One of the nice side-effects of doing the project is that you will get very good at using a
debugger. This is a crucial skill that will pay big dividendsthe rest of your career.

Logistics

You may work alone or with one partner as a team.

Any clarifications and revisions to the assignment will be posted on the class blackboard and web page.

You must do the assignment on the UMBC GL machines (that’s where the bomb was built). In fact, there
is rumor that Dr. Evil really is evil, and the bomb will alwaysblow up if run elsewhere. There are several
other tamper-proofing devices built into the bomb as well, orso they say.

Hand-In

There is no explicit hand-in. The bomb will notify your instructor automatically after you have successfully
defused it. You can keep track of how you (and the other groups) are doing by looking at

http://userpages.umbc.edu/˜cmsc313/313Bombs-Spring1 1.html

This web page is updated continuously to show the progress ofeach group.

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it not always easy to do. You
can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This
is probably the fastest way of defusing it.

We do make one request,please do not use brute force! You could write a program that will try every
possible key to find the right one. But this is no good for several reasons:

• You lose 1/4 point (up to a max of 10 points) every time you guess incorrectly and the bomb explodes.

• Every time you guess wrong, a message is sent to your instructor. You could very quickly saturate the
network with these messages, and cause the system administrators to revoke your computer access.

• We haven’t told you how long the strings are, nor have we told you what characters are in them.
Even if you made the (wrong) assumptions that they all are no more than 80 characters long and only
contain letters, then you will have2680 guesses for each phase. This will take a very long time to run,
and you will not get the answer before the assignment is due.

3



There are many tools which are designed to help you figure out both how programs work, and what is wrong
when they don’t work. Here is a list of some of the tools you mayfind useful in analyzing your bomb, and
hints on how to use them.

• gdb

The GNU debugger,gdb , is a command line debugger tool available on virtually every Linux plat-
form. The GL systems also support DDD (a GUI front-end forgdb ). You can trace through a program
line by line, examine memory and registers, look at both the source code and assembly code (we are
not giving you the source code for most of your bomb), set breakpoints, set memory watch points,
and write scripts. Here are some tips for usinggdb .

– To keep the bomb from blowing up every time you type in a wrong input, you’ll want to learn
how to set breakpoints.

– The CS:APP Student Site athttp://csapp.cs.cmu.edu/public/students.html
has a very handy single-pagegdb summary.

– For other documentation, type “help ” at the gdb command prompt, or type “man gdb”, or
“ info gdb ” at a Unix prompt. Some people also like to rungdb undergdb-mode in emacs.

– We’ve also put together a tutorial (excerpts from the on-line GNU gdb manaul) which is avail-
able in the directory/afs/umbc.edu/users/c/m/cmsc313/pub/tutorials/gdb

– The complete on-line GNU manual is at
http://sourceware.org/gdb/current/onlinedocs/gdb_to c.html

• objdump -t

This will print out the bomb’s symbol table. The symbol tableincludes the names of all functions and
global variables in the bomb, the names of all the functions the bomb calls, and their addresses. You
may learn something by looking at the function names!

• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.
Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to
system-level functions are displayed in a cryptic form. Forexample, a call tosscanf might appear
as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was tosscanf , you would need to disassemble withingdb . To disassem-
ble in gdb, use thedisassemble command.

• strings

This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commandsapropos andman
are your friends. In particular,man ascii might come in useful. Also, the web may also be a treasure
trove of information. If you get stumped, feel free to ask your TA for help.

4


