Making Finite State Machines Simpler

 $\sim \sim \sim \sim \sim$

FSM State Reduction

Review of Objectives

After this lecture, you should be able to...

- Declare the 2 conditions necessary for states in an FSM to be EQUIVALENT
- Use a state reduction to lower the number of required FSM states so that the design flow takes the form shown:-
- STEPS IN REDUCED FSM DESIGN
 - Draw a state transition diagram
 - Reduce number of states if possible
 - Derive a state table from the state transition diagram
 - Assign states, determine number, type of FF's required
 - Draw up a truth table
 - Design logic for combinational logic unit
 - Draw the complete schematic
- Write D, RS, T and JK FF excitation tables
- Employ FF excitation tables to use any kind of FF in an FSM designs

Definitions for FSM State Reduction

- Condition #1 : The outputs associated with 2 states are the SAME
- Condition #2 : Corresponding Next States are the SAME or EQUIVALENT
- With these 2 conditions satisfied, we can COMBINE the 2 states into 1 newly named state

State Reduction

• Description of state machine M_0 to be reduced.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

State Reduction – Step 1

 Look for output compatible transitions: Note that {A,B and E} and {C,D} transition to OUTPUT compatible states

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

State Reduction – Step 2

 Take each collection of states and examine each pair within the set for possibly equivalent states with the different inputs X=0 and X=1

Possibly Equivalent Pairs	Next State pairing with X=0 [output incompatible] = [!]	Next State pairing with X=1 [output incompatible] = [!]
(A,B)	(C,D)	
(A,E)	(A,C) [!]	(C,E) [!]
(B,E)	(A,D) [!]	(C,E) [!]
Possibly Equivalent Pairs	Next State pairing with X=0 [output incompatible] = [!]	Next State pairing with X=1 [output incompatible] = [!]
(C,D)		(A,B)

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

State Reduction – Step 3

• Eliminate pairs that are not output compatible:

• We see that E is not compatible with A or B or by implication with (C,D) which are already seen to be output incompatible. So E cannot be eliminated nor combined with other states.

So we have pairs {A,B}, {C,D} and {E} which represent 3 states which allow the FSM definition to remain unchanged.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Reduced State Table – Step 4

- We have {A,B}, {C,D} and {E} as the new set of states, which we will rename as A' B' and C' for the reduced FSM's internal states.
- We now write the "reduced state" state table for machine M_1 .

Input	X	
Current state	0	1
AB: A'	<i>B'</i> /0	<i>C'</i> /1
CD: B'	<i>B'</i> /1	<i>A'</i> /0
E: C'	<i>A'</i> /0	<i>B'</i> /1

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

The State Assignment Problem

B-11 **Appendix B - Reduction of Digital Logic** State Assignment SA₁ Boolean equations for machine M_2 using state assignment SA₁. • 0 1 $S_0 S_1 \\ 0 0$ 0 1 1 0 $S_0 S_1$ S_0S_1 00 00 01 01 01 11 11 11 10 10 10 $Z = \overline{S_1}\overline{X} + \overline{S_0}X$ $S_1 = \overline{X}$ $S_0 = S_1$ Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

Input	X		
Present state	0	1	
A	B/0	<i>C</i> /0	
В	D/0	E/0	
C	F/0	G/0	
D	D/0	E/0	
E	F/0	G/1	
F	D/0	E/1	
G	F/1	$G\!/\!0$	

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Sequence Detector Reduced State Table

Input	X		
Present state	0	1	
A: A' BD: B' C: C' E: D' F: E' G: F'	B'/0 B'/0 E'/0 E'/0 B'/0 E'/1	C'/0 D'/0 F'/0 F'/1 D'/1 F'/0	

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

Input	X			
Present state	0	1		
$S_2 S_1 S_0$	$S_2 S_1 S_0 Z$	$S_2 S_1 S_0 Z$		
A': 000	001/0	010/0		
<i>B'</i> : 001	001/0	011/0		
<i>C'</i> : 010	100/0	101/0		
<i>D'</i> : 011	100/0	101/1		
<i>E'</i> : 100	001/0	011/1		
<i>F'</i> : 101	100/1	101/0		

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Excitation Tables

- In addition to the D flip-flop, the S-R, J-K, and T flip-flops are used as delay elements in finite state machines.
- A Master-Slave J-K flip-flop is shown below.

B-18

Excitation Tables

• Each table shows the settings that must be applied at the inputs at time *t* in order to change the outputs at time *t*+1.

	$Q_t Q_{t+1}$	S R		$Q_t Q_{t+1}$	D	
S-R	0 0	0 0	D	0 0	0	
flip-flop	0 1	1 0	flip-flop	0 1	1	
	1 0	0 1		1 0	0	
	1 1	0 0		1 1	1	
	$Q_t Q_{t+1}$	J K		$Q_t Q_{t+1}$	Т	
.J-K	0 0	0 d	Т	0 0	0	
flip-flop	0 1	1 d	flip-flop	0 1	1	
	1 0	d 1		1 0	1	
	1 1			1 1	0	

Principles of Comp

d V. He uning

Serial Adder Next-State Functions

• Truth table showing next-state functions for a serial adder for D, S-R, T, and J-K flip-flops. Shaded functions are used in the example.

X	P Y	Tresent State S_t	D	(Set) (S	(Reset) R) T	J	K	Ζ
0	0	0	0	0	0	0	0	d	0
0	0	1	0	0	1	1	ď	1	1
0	1	0	0	0	0	0	0	d	1
0	1	1	1	0	0	0	d	0	0
1	0	0	0	0	0	0	0	d	1
1	0	1	1	0	0	0	d	0	0
1	1	0	1	1	0	1	1	d	0
1	1	1	1	0	0	0	d	0	1

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

D Flip-Flop Serial Adder Circuit

Majority FSM State Table

 (a) State table for majority FSM; (b) partitioning; (c) reduced state table.

Majority FSM State Assignment

• (a) State assignment for reduced majority FSM using D flipflops; and (b) using T flip-flops.

	Input	X	Input	X]
	P.S.	0 1	P.S.	0 1	
	$\begin{array}{c} S_2 S_1 S_0 \\ A': \ 000 \\ B': \ 001 \\ C': \ 010 \\ D': \ 011 \\ E': \ 100 \\ F': \ 101 \end{array}$	$\begin{array}{cccc} S_2 S_1 S_0 Z & S_2 S_1 S_0 Z \\ 001/0 & 010/0 \\ 011/0 & 100/0 \\ 100/0 & 101/0 \\ 000/0 & 000/0 \\ 000/0 & 000/1 \\ 000/1 & 000/1 \end{array}$	$\begin{array}{cccc} S_2 S_1 S_0 \\ A': & 000 \\ B': & 001 \\ C': & 010 \\ D': & 011 \\ E': & 100 \\ F': & 101 \end{array}$	$\begin{array}{cccc} T_2 T_1 T_0 Z & T_2 T_1 T_0 Z \\ 001/0 & 010/0 \\ 000/0 & 010/0 \\ 110/0 & 111/0 \\ 011/0 & 011/0 \\ 100/0 & 100/1 \\ 101/1 & 101/1 \end{array}$	
		(a)		(b)	-
Principles of Col	mputer Architecture by	M. Murdocca and V. Heuring		© 1999 M. Murdocca an	nd V. Heunir

Review of Objectives

- Declared the 2 conditions necessary for states in an FSM to be EQUIVALENT
- Used a state reduction to lower the number of required FSM states which slightly altered the FSM design flow
- Wrote D, RS, T and JK FF excitation tables
- Employed FF excitation tables to allow the application of any kind of FF in a given FSM design