Making Finite State Machines Simpler
 ~~~~~

FSM State Reduction

Review of Objectives

After this lecture, you should be able to...

- Declare the 2 conditions necessary for states in an FSM to be EQUIVALENT
- Use a state reduction to lower the number of required FSM states so that the design flow takes the form shown:-
- STEPS IN REDUCED FSM DESIGN
- Draw a state transition diagram
- Reduce number of states if possible
- Derive a state table from the state transition diagram
- Assign states, determine number, type of FF's required
- Draw up a truth table
- Design logic for combinational logic unit
- Draw the complete schematic
- Write D, RS, T and JK FF excitation tables
- Employ FF excitation tables to use any kind of FF in an FSM designs

Definitions for FSM State Reduction

- Condition \#1 : The outputs associated with 2 states are the SAME
- Condition \#2 : Corresponding Next States are the SAME or EQUIVALENT
- With these 2 conditions satisfied, we can COMBINE the 2 states into 1 newly named state

State Reduction

- Description of state machine M_{0} to be reduced.

Input	X	
A	0	1
B	$\mathrm{C} / 0$	$\mathrm{E} / 1$
C	$\mathrm{D} / 0$	$\mathrm{E} / 1$
D	$\mathrm{C} / 1$	$\mathrm{~B} / 0$
E	$\mathrm{C} / 1$	$\mathrm{~A} / 0$
$\mathrm{~A} / 0$	$\mathrm{C} / 1$	

State Reduction - Step 1

- Look for output compatible transitions: Note that $\{A, B$ and $E\}$ and $\{C, D\}$ transition to OUTPUT compatible states

Input	X	
Present state	0	1
A	$\mathrm{C} / 0$	$\mathrm{E} / 1$
B	$\mathrm{D} / 0$	$\mathrm{E} / 1$
C	$\mathrm{C} / 1$	$\mathrm{~B} / 0$
D	$\mathrm{C} / 1$	$\mathrm{~A} / 0$
E	$\mathrm{~A} / 0$	$\mathrm{C} / 1$

State Reduction - Step 2

- Take each collection of states and examine each pair within the set for possibly equivalent states with the different inputs $\mathrm{X}=0$ and $X=1$

Possibly Equivalent Pairs	Next State pairing with X=0 [output incompatible] = [!]	Next State pairing with X=1 [output incompatible] $=[!]$
(A, B)	(C,D)	
(A, E)	(A,C) $[!]$	(C,E) $[!]$
(B, E)	(A,D) $[!]$	(C,E) $[!]$

Possibly Equivalent Pairs	Next State pairing with $\mathrm{X}=0$ [output incompatible] $=[!]$	Next State pairing with X=1 [output incompatible] $=[!]$
(C,D)		(A,B)

State Reduction - Step 3

- Eliminate pairs that are not output compatible:
- We see that E is not compatible with A or B or by implication with (C,D) which are already seen to be output incompatible. So E cannot be eliminated nor combined with other states.

So we have pairs $\{A, B\},\{C, D\}$ and $\{E\}$ which represent 3 states which allow the FSM definition to remain unchanged.

Reduced State Table - Step 4

- We have $\{A, B\},\{C, D\}$ and $\{E\}$ as the new set of states, which we will rename as A' B' and C' for the reduced FSM's internal states.
- We now write the "reduced state" state table for machine M_{1}.

Input	X	
Current state	0	1
$A B: A^{\prime}$	$B^{\prime} / 0$	$C^{\prime} / 1$
$C D: B^{\prime}$	$B^{\prime} / 1$	$A^{\prime} / 0$
$E: C^{\prime}$	$A^{\prime} / 0$	$B^{\prime} / 1$

The State Assignment Problem

- Two state assignments for machine $\boldsymbol{M}_{\mathbf{2}}$.

Input	X	
P.S.	0	1
A	$B / 1$	$A / 1$
B	$C / 0$	$D / 1$
C	$C / 0$	$D / 0$
D	$B / 1$	$A / 0$

Machine M_{2}

State assignment $S A_{0}$

State Assignment SA

- Boolean equations for machine M_{2} using state assignment SA $_{0}$.

$$
S_{0}=\overline{S_{0}} S_{1}+S_{0} \overline{S_{1}}
$$

$$
\begin{aligned}
S_{1} & =\overline{S_{0}} \overline{S_{1}} \bar{X}+\overline{S_{0}} S_{1} X \\
& +S_{0} S_{1} \bar{X}+S_{0} \overline{S_{1}} X
\end{aligned}
$$

$$
\begin{aligned}
Z & =\overline{S_{0}} \overline{S_{1}}+\overline{S_{0}} X \\
& +S_{0} S_{1} \bar{X}
\end{aligned}
$$

State Assignment SA

- Boolean equations for machine M_{2} using state assignment SA $_{1}$.

$S_{0}=S_{1}$

$S_{1}=\bar{X}$

$Z=\overline{S_{1}} \bar{X}+\bar{S}_{0} X$

Sequence Detector State Transition Diagram

Sequence Detector State Table

Input	X	
Present state	0	1
A	$B / 0$	$C / 0$
B	$D / 0$	$E / 0$
C	$F / 0$	$G / 0$
D	$D / 0$	$E / 0$
E	$F / 0$	$G / 1$
F	$D / 0$	$E / 1$
G	$F / 1$	$G / 0$

Sequence Detector Reduced State Table

$A: A^{\prime}$	X	
Present state	0	1
$B D: B^{\prime}$	$B^{\prime} / 0$	$C^{\prime} / 0$
$C: C^{\prime}$	$B^{\prime} / 0$	$D^{\prime} / 0$
$E: D^{\prime}$	$E^{\prime} / 0$	$F^{\prime} / 0$
$F: E^{\prime}$	$E^{\prime} / 0$	$F^{\prime} / 1$
$G: F^{\prime}$	$B^{\prime} / 0$	$D^{\prime} / 1$

Sequence Detector State Assignment

Present state	X	
$S_{2} S_{1} S_{0}$	0	1
$A^{\prime}: 000$	$S_{2} S_{1} S_{0} Z$	$S_{2} S_{1} S_{0} Z$
$B^{\prime}: 001$	$001 / 0$	$010 / 0$
$C^{\prime}: 010$	$100 / 0$	$011 / 0$
$D^{\prime}: 011$	$100 / 0$	$101 / 0$
$E^{\prime}: 100$	$001 / 0$	$011 / 1$
$F^{\prime}: 101$	$100 / 1$	$101 / 0$

Sequence Detector K-Maps

- K-map reduction of next state and output functions for sequence detector.

$S_{2}=S_{2} S_{0}+S_{1}$

$S_{1}=\overline{S_{2}} \overline{S_{1}} X+S_{2} \overline{S_{0}} X$

$Z=S_{2} \overline{S_{0}} X+S_{1} S_{0} X+S_{2} S_{0} \bar{X}$

Sequence Detector Circuit

Excitation Tables

- In addition to the D flip-flop, the S-R, J-K, and T flip-flops are used as delay elements in finite state machines.
- A Master-Slave J-K flip-flop is shown below.

Clocked T Flip-Flop

- Logic diagram and symbol for a T flip-flop.

Circuit

Symbol

Excitation Tables

- Each table shows the settings that must be applied at the inputs at time t in order to change the outputs at time $t+1$.

$\begin{gathered} S-R \\ \text { flip-flop } \end{gathered}$	$Q_{t} Q_{t+1}$	$S \quad R$	$\begin{gathered} D \\ \text { flip-flop } \end{gathered}$	$Q_{t} Q_{t+1}$	D
	00	0 0		00	0
	01	10		011	1
	10	$0 \quad 1$		10	0
	11	$0 \quad 0$		11	1
$\begin{gathered} J-K \\ \text { flip-flop } \end{gathered}$	$Q_{t} Q_{t+1}$	$J \quad K$	Tflip-flop	$Q_{t} Q_{t+1}$	T
		$0 \quad d$		00	0
	$0 \quad 1$	1 d		$0 \quad 1$	1
	10	d 1		10	1
	11	$d \quad 0$		11	0

Serial Adder

Time (t) 43210

43210 Time (t)
11010

- State transition diagram, state table, and state assignment for a serial adder.

Present state $\left(S_{t}\right)$	$X Y$			
$A: 0$	00	01	10	11
$B: 1$	$0 / 0$	$0 / 1$	$0 / 1$	$1 / 0$
	$0 / 1$	$1 / 0$	$1 / 0$	$1 / 1$

Serial Adder Next-State Functions

- Truth table showing next-state functions for a serial adder for D, SR, T, and J-K flip-flops. Shaded functions are used in the example.

$\begin{array}{lcc} & & \begin{array}{c} \text { Present } \\ \text { State } \end{array} \\ X & Y & S_{t} \end{array}$	(Set) (Reset)						
	D	S	R	T	J	K	Z
$\begin{array}{llll}0 & 0 & 0\end{array}$	0	0	0	0	0	d	0
$\begin{array}{llll}0 & 0 & 1\end{array}$	0	0	1	1	d	1	1
$0 \quad 10$	0	0	0	0	0	d	1
$\begin{array}{lll}0 & 1 & 1\end{array}$	1	0	0	0	d	0	0
100	0	0	0	0	0	d	1
$\begin{array}{lll}1 & 0 & 1\end{array}$	1	0	0	0	d	0	0
110	1	1	0	1	1	d	0
$\begin{array}{lll}1 & 1 & 1\end{array}$	1	0	0	0	d	0	1

J-K Flip-Flop Serial Adder Circuit

$$
\begin{gathered}
J=X Y \\
K=\bar{X} \bar{Y} \\
Z=\bar{X} \bar{Y} S+\bar{X} Y \bar{S}+X Y S+X \bar{Y} \bar{S}
\end{gathered}
$$

D Flip-Flop Serial Adder Circuit

Majority Finite State Machine

Majority FSM State Table

- (a) State table for majority FSM; (b) partitioning; (c) reduced state table.

Input	X	
P.S.	0	1
A	$B / 0$	$C / 0$
B	$D / 0$	$E / 0$
C	$F / 0$	$G / 0$
D	$A / 0$	$A / 0$
E	$A / 0$	$A / 1$
F	$A / 0$	$A / 1$
G	$A / 1$	$A / 1$

(a)
$P_{0}=(A B C D E F G)$
$P_{1}=(A B C D)(E F)(G)$
$P_{2}=(A D)(B)(C)(E F)(G)$
$P_{3}=(A)(B)(C)(D)(E F)(G)$
$P_{4}=(A)(B)(C)(D)(E F)(G) \sqrt{ }$
(b)

Input	X	
P.S.	0	1
$A: A^{\prime}$	$B^{\prime} / 0$	$C^{\prime} / 0$
$B: B^{\prime}$	$D^{\prime} / 0$	$E^{\prime} / 0$
$C: C^{\prime}$	$E^{\prime} / 0$	$F^{\prime} / 0$
$D: D^{\prime}$	$A^{\prime} / 0$	$A^{\prime} / 0$
$E F: E^{\prime}$	$A^{\prime} / 0$	$A^{\prime} / 1$
$G: F^{\prime}$	$A^{\prime} / 1$	$A^{\prime} /$

(c)

Majority FSM State Assignment

- (a) State assignment for reduced majority FSM using D flipflops; and (b) using T flip-flops.

(a)

	Input	X	
P.S.		0	1
	$S_{2} S_{1} S_{0}$	$T_{2} T_{1} T_{0} Z$	$T_{2} T_{1} T_{0} Z$
$A^{\prime}:$	000	$001 / 0$	$010 / 0$
$B^{\prime}:$	001	$000 / 0$	$010 / 0$
$C^{\prime}:$	010	$110 / 0$	$111 / 0$
$D^{\prime}:$	011	$011 / 0$	$011 / 0$
$E^{\prime}:$	100	$100 / 0$	$100 / 1$
$F^{\prime}:$	101	$101 / 1$	$101 / 1$

(b)

Majority FSM Circuit

Review of Objectives

- Declared the 2 conditions necessary for states in an FSM to be EQUIVALENT
- Used a state reduction to lower the number of required FSM states which slightly altered the FSM design flow
- Wrote D, RS, T and JK FF excitation tables
- Employed FF excitation tables to allow the application of any kind of FF in a given FSM design

