Decision Making in Technology

A painfully brief intro to game theory, decision theory, utility and preferences, and equilibria

RJ10, 3D Printing: Sunday
Paper Topic: Tuesday
Bookkeeping

- Paper and paper topic
 - Paper topic: November 4th (Tuesday) at midnight
 - Topic; primary ethical concern or sub-area; proposed title
 - Paper due: last day of class
 - There will be some in-between steps posted Tuesday
- You MAY work with ONE partner
 - Shared presentation
 - Recommend 50% longer paper (6 instead of 4)
 - Written statements about what each person did

- Last ~3 class periods: presentations
- Participation Portfolio 2 will be due Nov 8th
Bookkeeping

- Midterms
 - Don’t be alarmed by essay grades – always curved
 - Essay grading: there’s always something to improve
 - Specific concerns? 1-week window
 - Please do come ask questions or object!

- Ethical Analysis 2 will be posted Monday
 - Due Nov. 17th – two weeks later
What agents?
- People: “You”; “Everyone else”
- Computer systems (real-time and not)
- Artificial intelligences (many kinds)
When Do Computers Make Decisions?

- At every fork in a search problem
- Every time a credit card is run
- Every time a prescription is filled
- ...a book is recommended
- ...a dossier is flagged
- ...a command is interpreted
- And so on.
Optimizing: obtaining best possible outcome
- Maximizing the value of some objective function

Objective Function
- A mathematical expression whose output you want to maximize/minimize
- Optimization is finding the right input parameters

Multi-objective optimization
- Finding the best possible parameters given multiple objective functions
Expected Value

- The predicted value of a variable, calculated as:
- The sum of all possible values, each multiplied by the probability of its occurrence

A $1000 bet for a 20% chance to win $10,000
\[20\%($10,000)+80\%($0)\] = $2000

Satisficing: achieving a goal sufficiently

- You can win a baseball game by one point now, or by two points in another inning
- You can have a search function that finishes in one second, or spend another 2 hours to make it half a second; full credit is 3 seconds or less
Terminology and Concepts

- **Game Theory**
 - *Mathematical* models of interaction
 - Between intelligent, rational decision-makers

- **Decision Theory**
 - Normative: how *should* agents make decisions?
 - Descriptive: how *do* agents make decisions?

- **Utility and utility functions**
 - Something’s perceived ability to satisfy needs or wants
 - A mathematical function that ranks alternatives by utility
What is Game Theory?

- Study of rational behavior in interactive situations
 - Everyone is self-interested and selfish
 - Or at least rational (weaker than selfish)

- Problems:
 - We aren’t “rational” (agents can be)
 - Knowing theory doesn’t guarantee success

- Goal: optimize chances of success
 - Achieving some target state
 - Optimizing some value
More Terminology

- Rationality (an overloaded word).

- A rational agent...
 - Behaves according to a ranking over possible outcomes that is:
 - Complete (covers all situations) and consistent
 - Optimizes over strategies to best serve a desired interest

- Has logical implications of knowledge
 - Assume that players have logical omniscience
 - If player 1 knows A, then 1 knows all of the logical implications of A
 - Assume players know all possible implications
 - If 2 knows that 1 knows that 2 knows that …
Classifying games

1. Sequential or simultaneous move?
 - Does a player get to change actions based on others’ behavior?
 - Tic-tac-toe; rock paper scissors

2. Zero-sum?
 - Gain or loss is exactly balanced by opponent’s gain or less
 - Chess; tic-tac-toe; soccer

3. One shot or repeated?
 - Either one is not necessarily easier or harder
 - Opportunity to build reputation (for good or bad)
Classifying games

4. Full, partial, or asymmetric information?
 - Perfect information:
 - Each player has information of all previous events
 chess; battleship
 - Complete information:
 - Every player knows payoffs for all possible actions
 tic-tac-toe; Prisoner's Dilemma; car buying

5. Non-cooperative or cooperative?
 - Are agreements enforceable?
Prisoner’s Dilemma

- One-shot or repeated?
 - Actually, either.
- Simultaneous?
- Zero-sum?
- Any uncertainty?
- Fixed rules?
- Cooperative?

Player 1
- Silence
 - P1: 6 months
 - P2: 6 months
- Testify
 - P1: Free
 - P2: 10 years

Player 2
- Silence
 - P1: 10 years
 - P2: Free
- Testify
 - P1: 5 years
 - P2: 5 years
Conceptual elements:

1. Actions and Strategies
 - Actions: the available actions any singular point
 - Strategy: complete plan for deciding actions
 - Different from “tactics and strategies”

2. Payoffs
 - An objective isn’t necessarily “winning”!
 - See: non-zero-sum games; car buying
 - Represent preferences with a payoff function
 - Can be monetary but will be represented by utility
What is Decision Theory?

- Mathematical study of strategies for optimal decision-making
 - Options involve different risks or expectations of gain or loss

- The study of identifying:
 - The values, uncertainties and other issues relevant to a decision
 - The resulting optimal decision

- What does decision mean?
Utility

- Utility: **perceived** ability to satisfy needs or wants
- Utility function: Mathematical f that ranks alternatives
- Marginal utility: utility of subsequent iterations of thing
- Total utility: Utility of consuming ALL THE THINGS
An agent chooses among:
- Prizes (A, B, etc.)
- Lotteries (situations with uncertain prizes and probabilities)

Notation:
- $A \succ B$ A preferred to B
- $A \sim B$ Indifference between A and B
- $A \succ \sim B$ B not preferred to A
Rational Preferences

- Preferences of a rational agent must obey constraints
 - Transitivity
 - Monotonicity
 - Orderability \((A > B) \lor (B > A) \lor (A \sim B)\)
 - Substitutability \((A \sim B \Rightarrow [p,A; 1-p,C] \sim [p,B; 1-p,C])\)
 - Continuity \((A > B > C \Rightarrow \exists p [p,A; 1-p,C] \sim B)\)

- Rational preferences, when followed, give behavior that \textit{maximizes expected utility}.

- Violating the constraints leads to irrationality
 - For example: an agent with intransitive preferences can be induced to give away all its money.
Utilities map states to real numbers. Which numbers?
People are very bad at mapping their own preferences

Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery L_p that has
 - “best possible prize” u^T with probability p
 - “worst possible catastrophe” u_L with probability $(1-p)$
- adjust lottery probability p until $A \sim L_p$

Maximizing Expected Utility

<table>
<thead>
<tr>
<th>Pay 30</th>
<th>\sim</th>
<th>Win nothing</th>
<th>$p=0.9999999$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>Instant death</td>
<td>$p=0.000001$</td>
</tr>
</tbody>
</table>
Money

Money does not behave as a utility function

That is, people don’t maximize expected value of dollar assets.

People are risk-averse:

- Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV (L))

Want to bet $1000 for a 20% chance to win $10,000?

$$[20\%($10,000)+80\%($0)] = $2000 > [100\%($1000)]$$

Expected Utility Hypothesis

- rational behavior maximizes the expectation of some function u, which in need not be monetary
Micromorts: one-millionth chance of death
- Useful for:
 - Russian roulette
 - Paying to reduce product risks, etc.

QALYs: quality-adjusted life years
- Useful for:
 - Medical decisions involving substantial risk
Nash Equilibrium: a state where no party has an incentive to unilaterally change strategies

- P1 and P2 have both always testified.
 - Who has incentive to be silent next round?

- Are there other equilibria?

- What game element would make it possible to change?
More Terminology

- Multi-objective optimization
 - Finding the best possible parameters given *multiple* objective functions
 - Decisions need to be optimized given *trade-offs* between two or more conflicting objectives
 - Minimizing cost *and* maximizing comfort while buying a car

- Pareto-optimal: no function can improve without another one degrading
 - It’s impossible to make anyone better off without making someone worse off
Deciding Whether to Approve a CC Transaction

<table>
<thead>
<tr>
<th></th>
<th>Approve</th>
<th>Don’t Approve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraudulent</td>
<td>Gain: None</td>
<td>Gain: Customer trust</td>
</tr>
<tr>
<td></td>
<td>Cost: Lost value of transaction</td>
<td>Cost: Minor customer trust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>customer inconvenience; reissuing fee</td>
</tr>
<tr>
<td>Not fraudulent</td>
<td>Gain: Improved customer trust; transaction fee</td>
<td>Gain: None</td>
</tr>
<tr>
<td></td>
<td>Cost: None</td>
<td>Cost: Major customer inconvenience; loss of trust; reissuing fee</td>
</tr>
</tbody>
</table>
When Do We Care?

- **Recommend a Book**

<table>
<thead>
<tr>
<th></th>
<th>They buy it</th>
<th>They don’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show a few good options</td>
<td>Gain: $$</td>
<td>Gain: None</td>
</tr>
<tr>
<td></td>
<td>Cost: Calculating options; possible minimal annoyance</td>
<td>Cost: Minimal annoyance</td>
</tr>
<tr>
<td>Show a whole bunch of options</td>
<td>Gain: $$</td>
<td>Gain: None</td>
</tr>
<tr>
<td></td>
<td>Cost: Calculating options; they may or may not be substantially annoyed</td>
<td>Cost: Potentially substantial annoyance</td>
</tr>
</tbody>
</table>