

Eile Edit View Go Bookmarks Tools Help							Ø ·
🐼 🛇 🞯 🛇 🏠 🧉	http://bb-app6.umbc.edu/webap	ps/portal/frameset.jsp?tab=c	ourses&url=/bin	/common/cours	e.pl?course_id=_1	🔹 🧿 🚺	5
💡 LATEX 🎐 myUMBC 🏠 CMSC 104 🎐 C_Cr	ash_Course.pdf 🎐 CS50: Int	roduction t 🎐 hw01_soln.	pdf (appli 🕻	Introduction	:o C Pro 🚺 bar	ter <mark>?</mark> RFC 280:	l - Internet
UMBC	î	ž 🕢 👌					powered by
AN HONORS UNIVERSITY IN MARYLAND	н	ome Help Logout		Searc	h		Google"
My Blackboard Courses Co	mmunity Blackboard	Help					
0							
Homework		Laster	No.	400			
Announcements		Lectu	rer no	les			
Lectures	Portable Document	Format (PDF) files can 1	be viewed by	Adobe Red	der (Downloa	d Acrobat)	
myGrades	Dormer Doint (DDT) fi	er could be rierred br	PowerPoint	Vienen 200	12 (Dormland I	DTT (instruct)	
Handouts	rowerrom (rri)	es could be viewed by i	Ower1 Ow	riener 200	5 (LYOWILLOAG I	<u>r i viewei</u>)	
Tools Svllabus	#	Lecture Title	PDF	PPT	Extras		
CSMC104 Page	L1	Introduction	L1-PDF	$\underline{L1-PPT}$			
Instructor Info	1.2	Machine	12-PDF	T 2-DDT			
Course Map Control Panel	52	Architecture	<u> 12-11/1</u>	<u>172-11 1</u>			
	L2-A	Number Systems	L2A-PDF	L2A-PPT	L2-Extras		
	L3	Operating Systems	L3-PDF	L3-PPT			
	L4	Review of Number	L4-PDF	L4-PPT	L4-Extras		
	7.6	Al (1)	LE DDE	LE DIT			
	LS	Algorithms(1)	L2-PDF	LD-PPT			
	L6	Algorithms(2)	L6-PDF	L6-PPT			

UMBC CMSC 104 CSEE 104 current 104	
CMSC 104(sec301), Fall 2005	
Homework 3 - Basic Algorithms	
Due Date:	
Friday, September 30th, at the beginning of class Note that late projects will NOT be accepted.	
Objectives:	
 To practice solving problems in a generic manner To practice writing basic pseudocode for the solution of a problem 	
Assignment:	
 First solve the problem shown below. (25 points, so make sure you show your work, no matter how simple you think it is) 	
 Then write an algorithm for the problem in pseudocode. (75 points) 	
Your grade in CMSC104 is based on the following:	
5 Quizzea (100 ptz. each)(1% each) = 5% 3 Horswords (100 ptz. each)(5% each) = 15% 4 Projectz 100 ptz. each)(7.5% each) = 30% 2 Exama [100 ptz., each), [7.5% each] = 30% 3 Final [100 ptz.) = 20% 9 Otal = 100% [55,000 ptz.)	
If you have the following homework, project and exam grades at the end of the semester, calculate your final grade for the course:	
5 Quinzas -> 88%, 98%, 0%, 89%, 100% 3 Honewoorks -> 100%, 95%, 99% 4 Projects -> 100%, 95%, 98% 2 Exama -> 94%, 85%, 98% 1 Final -> 89% Total = 100% (10000 pts.)	
Tips about the problem : 4 You should allow the user to enter in each of the quiz, homework, project, exam and final grades.	
Last Modified: 23-Sep-2005	

Algorithms 3

Pseudocode, If, If-Else, While, For

Control Structures

Any problem can be solved using only three logical **control structures**:

- Sequence
- Selection
- Repetition

While & For

Euclid's Algorithm

Problem: Find the largest positive integer that divides evenly into two given positive integers (i.e., the **greatest common divisor**).

Algorithm:

- 1 Assign M and N the values of the larger and smaller of the two positive integers, respectively.
- 2 Divide M by N and call the remainder R.
- 3 If R is not 0, then assign M the value of N, assign N the value of R, and return to Step 2. Otherwise, the greatest common divisor is the value currently assigned to N.

Compute the average of ten numbers

Bank

Display "Enter exisitng balance: " Read <balance> Display "Enter the deposit amount: " Read <depositAmount> <balance> = <balance> + <depositAmount> If (<balance> < 500) <monthlyInterest> = <balance> * .02 Display "monthly Interest is", <monthlyInterest> <balance> = <balance> + <monthlyInterest> End If Display "New balance is: ", <balance>

Cookie Jar Problem

Problem:

Mom had just filled the cookie jar when the 3 children went to bed.

That night one child woke up, ate half of the cookies and went back to bed.

Later, the second child woke up, ate half of the remaining cookies, and went back to bed.

Still later, the third child woke up, ate half of the remaining cookies, leaving 3 cookies in the jar.

How many cookies were in the jar to begin with?

What will user see

Enter the number of children: 3Enter the number of cookies remaining: 3Original number of cookies = 24

Cookie Jar Problem

- What if the Cookie Jar was not touched
 - Number of kids is O
- What if we wanted our Pseudocode to emphasize that the cookie jar was not touched.
- We need to add an extra **Display** statement. But

it should be executed only if number of kids is ${\cal O}$

If-Else

Compute a Min

Display "Enter x: " Read <numberX> Display "Enter y: " Read <numberY> If (<numberX> <= <numberY>) Display " Y is grater or equal to X" Else Display " X is grater then Y" EndIfElse

What will user see if He/She enters 1

Enter the number of children: 3 Enter the number of cookies remaining: 3 Original number of cookies = 24 Good Bye

HW2

Logic must be correct

Style

- Do not write C Code (no }, no ;)
- Use Key words to Display and Read
- Need to have variables in <>
- Need to have indentation for if, if-else, for, while