D-Algorithm -- Roth (IBM 1966)

Roth's D-Algorithm (D-ALG) defined the calculus and algorithms for ATPG using Dcubes.

Definitions

Singular cover: Defined to be the minimal set of input signal assignments needed to represent essential prime implicants in Karnaugh map.

AND	a	b	d	NOR	d	e	F
1	0	Х	0	4	1	Х	0
2	Х	0	0	5	Х	1	0
3	1	1	1	6	0	0	1


```
Design Verification & Testing
```

D-Calculus and D-Algorithm

D-cube: A collapsed truth table entry.
 For example, combine rows 3 and 1 of the AND gate singular cover, and express it in Roth's 5-valued algebra (row 3 is good machine).

*D*1*D*

Rows 3 and 2 yield the *propagation D-cube*: 1 D D

```
A third is D D D
```

Inverting *D* to \overline{D} in each of these yields the 6 *D*-cubes for the AND gate.

```
3 of the NOR gate D-cubes are:

D \cap \overline{D}

O D \overline{D}

D D \overline{D}
```


D-Calculus and D-Algorithm

D-intersection: Define how different *D-cubes* can coexist for different gates in a logic circuit.

 $0 \cap 0 = 0 \cap X = X \cap 0 = 0$ $1 \cap 1 = 1 \cap X = X \cap 1 = 1$ $X \cap X = X$

Rule: If one cube assigns a specific signal value, the other cubes must assign either the same signal or X

For example, 0 X X intersect 1 X X is the empty cube (incompatible).

D-intersection	0	1	X	D	D
0	0	φ	0	Ψ	Ψ
1	φ	1	1	Ψ	Ψ
Х	0	1	Х	D	D
D	ψ	ψ	D	μ	λ
$\overline{\mathrm{D}}$	Ψ	ψ	D	λ	μ

D-Calculus and D-Algorithm

D-intersection (contd.):

The greek symbols ϕ and ψ represent incompatible assignments.

If the values are incompatible during propagation or implications, the assignment is called *inconsistent* and *backtracking* is necessary.

Greek symbols μ and λ indicate incompatibilities if *both* are present in *D*-cubes with multiple input *D* and \overline{D} .

For example, if only 1 occurs, invert the *D*s in the second cube and perform intersection.

D-contains: A cube A D-contains cube B if the set of A cube vertices contains (is a superset of) the B cube vertices.

D-Calculus and D-Algorithm

• *Primitive D-cubes of failure (PDF)*: These model faults including:

SA0 (represented by D) *SA1* (represented by D)
Bridging faults (short circuits)
Arbitrary change in logic gate function (e.g., from AND to OR).

For the AND gate, the *PDF* for output *SA0* is *11D* Here the good machine generates a *1* when both inputs are *1*, while the bad machine generates a *0*.

The *PDF*s for the AND gate output *SA1* are $0 \times \overline{D}$ and $X \otimes \overline{D}$.

Note the *PDF* are distinct from the *propagation D-cubes*. The former models a failure at the gate. The latter models the conditions for fault effect propagation.

UMBC

D-Calculus and D-Algorithm

Implication procedure: Consists of the following steps:

□ Model the fault with the appropriate *PDF*.

□ Select *propagation D-cubes* to propagate fault-effect to PO(s) (*D-drive procedure*).

□ Select singular cover cubes to justify internal circuit signals (*consistency procedure*).

The D-algorithm's main problem is that it selects cubes and singular covers arbitrarily during test generation.

ORS UNIVERSITY IN MARYLAND

Design Verification & Testing

ATPG

CMPE 418

D-ALG Examples

Truth Table

Propagation D-cubes

A	B	С	d	е	F
1	1		1		
0			0		
	0		0		
	1	1		0	
	0			1	
		0		1	
				1	0
			1		0
			0	0	1

Design Verification & Testing

ATPG

D-ALG Examples

The following procedure is carried out for d SA0 in the previous circuit:

Step	A	B	С	d	e	F	Type of cube
1	1	1		D			PDF for AND gate
2				D	0	D	Propagation D-cube for NOR gate
3		1	1		0		Singular cover of NAND gate

Example #2:

Design Verification & Testing

ATPG

CMPE 418

D-ALG Examples

Steps followed to generate *test cube* (*tc*):

	Step		A	B	С	D	e	ſ	g	h	k	L
D-drive	1		D									
	2		D					0		D		
	3		D					0		D	1	D
Consistency	4	or							1		1	
	5	not						0	1			
	6	or			0		0	0				
	7	and		0			0					
		tc	D	0	0		0	0	1	D	1	\overline{D}
D-chain dies												

This example and table is given in Roth's paper.

Several other examples are covered in the paper.

Note that all implications are performed in the *consistency* procedure here.

A later example by our authors indicates *the implications* are carried out after each *D propagation* step in the *D-drive*?

