
CMPE 315 Project Specification

Project Specification: Cache Design

(Please refer to the webpage for any changes to this specification over the next couple of weeks).

Assigned:Apr,Fri,2nd
Due: Last day of class.
Code Submission: In three weeks, details will be provided on the webpage and discussed in class.

Description:

CD[0] CD[1] CD[2] CD[3] CD[4] CD[5] CD[6] CD[7]

MD[7]

MD[6]

MD[4]

MD[3]

MD[2]

MD[1]

MA[7]MA[5]MA[4] MA[6]MA[2]MA[0]MA[1] VDD

GND

MA[3]

CA [7]

CA [6]

CA [5]

CA [4]

CA [3]

CA[2]

MD[5]

CA[0]

CA[1]

Core GND Core VDD CornerInput Output Input

RD/WR

START MD[0]

BUSY

Output

CLK

RESET

ENABLE

State Machine

Decoder

RegisterRegister

Cache

888831

Number of bits

4 words/ block

blocks
8

TagValid

Hit/Miss

Output Enable

Mux

Output Enable



Fall 2019: CMPE 315 Project Specification

Details

Your assignment is to design, implement and simulate in VHDL, and do the layout for a cache 
block described below. The details of a cache and it’s use will be discussed in the class.

• Direct Mapped Cache (see extensions for extra credit)
• Byte addressable (8-bit data per location)
• 4 byte blocks, requires 2 address bits to decode
• 8 blocks, requires 3 address bits to decode
• 8 bit address, 3 bit tag
• Write through with no write allocate
• Read hit: 2 clocks
• Write hit/miss: 3 clocks
• Read miss: 19 clocks

Chip interface

A cache usually needs two address and data interfaces, one to the upper level cache/processor and 
another to lower level cache/memory. In your design, you have both these interfaces, 8-bit address 
and data connections to both the CPU and the memory. 

CPU Address (CA):8-bit address input from the CPU for both read and write requests. Address 
will be provided by the CPU on the rising edge of clock along with the start signal 
CPU Data (CD): 8-bit input/output data bus. Used as input for write requests and output for read 
requests. Data will be provided on the rising edge of clock for write requests along with the start 
signal
Start: Handshaking signal indicating the start of a read/write request from the CPU, goes high on 
a positive edge. (Internally your chip works on the negative edge. The address, start, read_write 
control and data, will be setup half a clock cycle before you start operating on the negative edge)
Busy: Handshaking signal indicating to the CPU that your chip is processing the previous request.
Read_Write (RD/WR): If signal is high CPU is requesting a read operation, if low a write opera-
tion
Reset: Master reset to the chip. A high on reset should invalidate all the entries in the cache and 
reset your state machine to it’s reset state. Reset any other registers as required.
Clock (clk): Clock input to the chip. The CPU inputs/outputs and the memory inputs/outputs will 
be synchronized with this clock signal also.
Memory Address (MA): Address output to the memory in case of read miss. The last two bits of 
the address should always be 00 i.e. you provide the address for the last word in the block. The 
memory controller will automatically increment the address four times and provide you data for 
the whole block (4 bytes).
Memory Data (MD): Data input from the memory. It takes the memory 8 clock cycles after get-
ting the enable signal to provide the first byte of data. It will sequentially provide four bytes of 

data required for the whole block. The first data byte will become valid on the 8th negative edge 
after asserting enable and will stay stable for 2 clock cycles. The next byte will be provided on the 



Fall 2019: CMPE 315 Project Specification

10th negative edge after asserting enable and will stay stable for 2 clock cycles. The last two data 

bytes will have similar timing and will be provided on the 12th and 14th negative edges.
Enable: The enable signal is an output requesting the memory to perform a read operation starting 
at the address provided on MA. The memory returns four bytes as explained above starting at the 
8th clock cycle after asserting this signal.

Operations

The cache has 8 blocks, with four bytes per block. Therefore, you need 3 bits to select one of the 
8 blocks and 2 bits to select the correct byte from the block. The remaining 3 bits in the address 
are used as a tag.

The start signal from the CPU marks the beginning of a operation. The CPU provides the address 
for read operations and the address as well as data for write operations. All these signals are pro-
vided on the rising edge of clock. Your chip internally works at the falling edge of clock so the 
signals are stable before you need to latch them thus avoiding setup time violations. The signals 
will be removed by the CPU on the next rising edge of clock. The busy signal triggers the removal 
of these signals. Busy is an output that should go high on the negative edge after receiving the 
start signal from the CPU.

Read Hit

For a read operation, the CPU turns start high, provides the address and turns read_write signal 
high on the positive edge of clock. On the negative edge you need to latch all these required sig-
nals and turn on the busy signal. The inputs will be removed by the CPU on the positive edge 
once it receives a busy signal. You determine whether the data being referenced is in the cache, by 
comparing the tag bits of the address with the tag bits stored in the block given by the block offset 
in the address. Also you need to check that the block is valid. Simultaneously you need to read the 
correct byte from the cache. If the tag and valid checking operation signals a hit, output enable 
should go high on the next negative edge, the data should be latched in the output register so that 
it stays stable for one whole clock cycle and the busy signal should be turned off. The CPU will 
read the data off the data bus on the positive edge. The next operation could be requested on any 
subsequent clock cycle.

Write Hit

CPU signals follow the same timing as the read, but read_write is set to low and the data to be 
written is provided. The required inputs should be latched on the negative edge, busy should be 
turned on and tag/valid compare should be performed. If the result is a hit, on the next negative 
edge the data should be written to the correct byte in the selected block, busy should still stay 
high. On the second negative edge after receiving the write request busy should go low signalling 
the end of the write operation. The CPU will provide a new input on any subsequent clock cycle.

3 3 2

Byte
Offset

Block
Offset

Tag



Fall 2019: CMPE 315 Project Specification

Write Miss

As we are using write through with no write allocate, you don’t have to get the block from mem-
ory on a write miss. The timing and operations are similar to the write hit case. Only difference is 
that as you don’t have a hit, no write operation should be performed on the cache. The busy 
should go low after two clocks from receiving the write request as in the hit case and the CPU can 
provide a new request after busy is low.

Read Miss

The signals are provided by the CPU as described in the read hit operation. On the second nega-
tive edge of the clock, you get a miss in this case i.e. the block is not present in the cache. On this 
edge you keep busy high, turn on the enable signal to the memory requesting a block read and 
provide the byte address for the last byte in the block that you need. The memory latches the 
address once it sees enable is high on a positive edge. Enable should be turned low after one clock 
cycle (third negative edge since receiving the request). The memory needs 8 clock cycles to 
access the data. After 8 clock cycles, the memory provides the data for the last byte on the nega-
tive edge. The data will stay stable for 2 clock cycles. You should setup the correct address for 
write and update the cache with the new data byte. During the first write operation you should 
also update the tag and turn on the valid bit. Write timing is very critical, if there are any glitches 
in the address lines or the data lines while the write signal to the cache is enabled, you could 
write the wrong data or overwrite another location in the cache. Your write signal should be 
turned on exactly for one clock cycle from the positive edge after the data is valid to the positive 
edge before the new data byte is provided. The address should be stable for 2 clock cycles, simi-
lar to the data. The address should be stable for half a clock cycle before the write is turned on and 
for half a clock cycle after the write is turned off. Once the bytes are written, the correct byte 
requested by the CPU should be read and latched on the output register, busy should be turned off 
and the output enabled on a negative edge. Output enable should go low after one clock cycle as 
in the case of read hit. CPU will read the data on the positive edge after output enable goes high 
and will provide a new request on any subsequent clock cycle.

Cache Cell

Usually SRAM and CAM (content access memory) cells are used for caches. However, extensive 
simulations need to be performed to evaluate the effect of loads on these designs. To avoid such 
situations use the following cell for your cache, which provides, simultaneous read and write 
capability at the expense of extra area.

Chip Waveforms

The chip timing waveforms explaining the above operations are provided as a separate document.

Latch 

Positive level
sensitive 

Write Data 

Write Enable 
Read Data 

Tx 
Gate 

Read Enable
Read Enable



Fall 2019: CMPE 315 Project Specification

Extra Credit (25%)

Make a two-way set associative cache i.e. instead of a 32 byte cache you have a 64 byte cache 
implementing 2 sets. For block replacement implement a least recently used (LRU) scheme.

Report Requirements and Deadlines

Detailed report requirements will be provided for both the submissions. The first submission 
(VHDL code, simulation results and imported schematics) will be due in three weeks and the full 
project submission (corrections required from the first submission, the chip layout, LVS and sim-
ulation results) will be due on the last day of classes. During the last Friday session before the 
final submission we will meet each team to determine progress.

Late penalty will be applied for submissions that don’t make the above deadlines. There is 
an extra credit component to this project worth 25% (that translates to more than half a let-
ter grade in the overall class grade!!!). If you have intentions of doing the extra credit think 
about how you will integrate it into you design before starting the initial design process. The 
extra credit part is designed to be relatively easy to integrate into your code and layout once 
the primary project is done.


