Systems Design and Programming

Instructor:

Chintan Patel

Text:

Barry B. Brey, 'The Intel Microprocessors, 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor, Pentium II, Pentium III and Pentium 4, Architecture, Programming and Interfacing' Sixth Edition, Prentice Hall (2003).

Supplementary text:

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 'The 80x86 IBM PC and Compatible Computers (Volumes I&II), Assembly Language, Design, and Interfacing', Third Edition, Prentice Hall (2000).

Lab Text:

Bob Neveln, 'Linux Assembly Language Programming', Prentice Hall PTR.

Web:

http://www.cs.umbc.edu/~cpatel2

Course Description

This course covers:

- Intel 80x86 assembly language.
- Architecture of the Intel microprocessors.
- Hardware configuration and control of:
 - Common microprocessor support chips, e.g. Interrupt controller.
 - Popular I/O devices, e.g. UART, sound card.

Prerequisites:

- Experience with the C programming language.
- Some familiarity with Operating Systems, such as Windows.
- Experience with the Linux operating system.

Projects:

- Assembly Language Programming
- Hardware Project

4004	4:
	4-bit microprocessor.
	4KB main memory.
	45 instructions.
	PMOS technology.
	50 KIPS
8008	8: (1971)
	8-bit version of 4004.
	16KB main memory.
	48 instructions.
	NMOS technology.
8080	<i>D: (1973)</i>
	8-bit microprocessor.
	64KB main memory.
	2 microseconds clock cycle time; 500,000 instructions/sec.
	10X faster than 8008.
IBC	
RS UNIV	VERSITY IN MARYLAND

Systems Design & Programming

80x86 Evolution

Introduction

CMPE 310

80x86 Evolution

8085: (1977)

8-bit microprocessor - upgraded version of the 8080.

64KB main memory.

1.3 microseconds clock cycle time; 769,230 instructions/sec.

246 instructions.

Intel sold 100 million copies of this 8-bit microprocessor.

8086: (1978) 8088 (1979)

16-bit microprocessor.

1MB main memory.

2.5 MIPS (400 ns).

■ 4- or 6-byte instruction cache.

Other improvements included more registers and additional instructions.

80286: (1983)

16-bit microprocessor very similar in instruction set to the 8086.

16MB main memory.

4.0 MIPS (250 ns/8MHz).

80x86 Evolution

80386: (1986)

- **32-bit** microprocessor.
- **4GB** main memory.
- 12-33MHz.
- Memory management unit added.
- Variations: DX, EX, SL, SLC (cache) and SX.
 - 80386SX: 16MB through a 16-bit data bus and 24 bit address bus.

80486: (1989)

- 32-bit microprocessor, 32-bit data bus and 32-bit address bus.
- **4GB** main memory.
- 20-50MHz. Later at 66 and 100MHz
- Incorporated an 80386-like microprocessor, 80387-like floating point coprocessor and an 8K byte cache on one package.
- About half of the instructions executed in 1 clock instead of 2 on the 386.
- Variations: SX, DX2, DX4.
 - DX2: Double clocked version:
 - 66MHz clock cycle time with memory transfers at 33MHz.

80x86 Evolution

Pentium: (1993)

- **32**-bit microprocessor, 64-bit data bus and 32-bit address bus.
- **4GB** main memory.
- 60, 66, 90MHz.
 - 1-and-1/2 100MHz version.
 - Double clocked 120 and 133MHz versions.
 - Fastest version is the 233MHz (3-and-1/2 clocked version).

16KB L1 cache (split instruction/data: 8KB each).

Memory transfers at **66MHz** (instead of 33MHz).

Dual integer processors.

80x86 Evolution

Pentium Pro: (1995)

- 32-bit microprocessor, 64-bit data bus and 36-bit address bus.
- **64GB** main memory.
- Starts at 150MHz.
- 16KB L1 cache (split instruction/data: 8KB each).
- 256KB L2 cache.
- Memory transfers at 66MHz.
- **3** integer processors.

80x86 Evolution

Pentium II: (1997)

- 32-bit microprocessor, 64-bit data bus and 36-bit address bus.
- 64GB main memory.
- Starts at 266MHz.

32KB split instruction/data L1 caches (16KB each).

Module integrated 512KB L2 cache (133MHz).

Memory transfers at 66MHz to **100MHz** (1998).

80x86 Evolution

Pentium III: (1999)

- **32-bit microprocessor, 64-bit data bus and 36-bit address bus.**
- 64GB main memory.
- 800MHz and above.
- 32KB split instruction/data L1 caches (16KB each).
- On-chip 256KB L2 cache (at-speed).
- Memory transfers 100MHz to **133MHz**.
- Dual Independent Bus (simultaneous L2 and system memory access).

Pentium III

80x86 Evolution

Pentium IV: (2002)

- 1.4 to 1.9GHz and the latest at 3.20 GHz and 3.46GHz (Hyper-Threading)!
- **1MB/512KB/256KB L2 cache.**
- 800 MHz (about 6.4GB/s)/533 MHz (4.3 GB/s)/ 400MHz (3.2 GB/s) system bus.
- ■1066 MHz front side bus just available.
- Specialized for streaming video, game and DVD applications (144 new SIMD 128-bit instructions).
- 0.13um, more than 55 million transistors, 60nm transistors.
- Newer ones are in 90nm transistors, more than 125 million possible.

Refer to the following URL for more details:

http://www.intel.com/design/pentium4/documentation.htm