
1

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

ASCII

Review conversion from one base to another in text as well as two's complement.

Table 1: ASCII (American Standard Code for Information Interchange)

Dec Hex Sym Dec Hex Sym Dec Hex Sym Dec Hex Sym
0 0 NUL 32 20 64 40 @ 96 60 `
1 1 SOH 33 21 ! 65 41 A 97 61 a
2 2 STX 34 22 " 66 42 B 98 62 b
3 3 ETX 35 23 # 67 43 C 99 63 c
4 4 EOT 36 24 $ 68 44 D 100 64 d
5 5 ENQ 37 25 % 69 45 E 101 65 e
6 6 ACK 38 26 & 70 46 F 102 66 f
7 7 BEL 39 27 ' 71 47 G 103 67 g
8 8 BS 40 28 (72 48 H 104 68 h
9 9 TAB 41 29) 73 49 I 105 69 i

10 A LF 42 2A * 74 4A J 106 6A j
11 B VT 43 2B + 75 4B K 107 6B k
12 C FF 44 2C , 76 4C L 108 6C l
13 D CR 45 2D - 77 4D M 109 6D m
14 E SO 46 2E . 78 4E N 110 6E n
15 F SI 47 2F / 79 4F O 111 6F o

2

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

ASCII

Table 2: ASCII (American Standard Code for Information Interchange)

Dec Hex Sym Dec Hex Sym Dec Hex Sym Dec Hex Sym
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ^ 126 7E ~
31 1F US 63 3F ? 95 5F _ 127 7F

3

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Assembly Directives

ASCII: Stored using an assembler directive db:

Word-sized (dw) and doubleword-sized data (dd):

Little endian: Least significant byte is always stored in the lowest memory location.

floatstr db ’Float number -> %f ’, 10, 0

main1_str: db ’ Rectangular Areas’, 10, 0

temp_buf: times 200 db 0
temp_buf_size: equ $-temp_buf

neg_exponent: dd -100

301H
302H
303H

12H

34H Low-order byte
High-order byte

Storage of the number 1234

4

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Floating Point Formats

For single percision, the sign bit + 8-bit exponent + 24-bit mantissa = 33 bits !
The mantissa has a hidden 1 bit in the leftmost position that allows it to be stored as a
23-bit value.

The mantissa is first normalized to be >= 1 and < 2, e.g., 12 in binary is 1100, normal-

ized is 1.1 X 23.

The exponent is also biased by adding 127 (single) or 1023 (double), e.g. the 3 in the
previous example is stored as 127 + 3 = 130 (82H).

S Exponent Significand

0222331 30

Single Percision

S Exponent Significand (mantissa)

0515263 62

Double Precision

5

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Floating Point Formats and Directives

There are two exceptions:
The number 0.0 is stored as all zeros.
The number infinity is stored as all ones in the exponent and all zeros in the mantissa.
(The sign bit is used to indicate + or - infinity.)

Directive is dd for single, dq for double and dt for 10 bytes:

+12 1100 1.1 X 23 0 10000010 1000000 00000000 00000000

Dec Bin Normal Sign Expon Mantissa

dd 1.2

dt 3.141592653589793238462
dq 1.e+10

6

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Intel Assembly

Format of an assembly instruction:

LABEL:
Stores a symbolic name for the memory location that it represents.

OPCODE:
The instruction itself.

OPERANDS:
A register, an immediate or a memory address holding the values on which the opera-

tion is performed.

There can be from 0 to 3 operands.

LABEL OPCODE OPERANDS COMMENT
DATA1 db 00001000b ;Define DATA1 as decimal 8
START: mov eax, ebx ;Copy ebx to eax

7

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Data registers:

Let's cover the data addressing modes using the mov instruction.
Data movement instructions move data (bytes, words and doublewords) between reg-

isters and between registers and memory.

Only the movs (strings) instruction can have both operands in memory.

Most data transfer instructions do not change the EFLAGS register.

eax

ebx

ecx

edx

esp

ebp

edi

esi

ah al

bh bl
ch cl

dh dl

ax

bx
cx

dx

sp

bp

di

si

Accumulator
Base Index
Count
Data
Stack Pointer
Base Pointer
Destination Index
Source Index

16-bit
registers

32-bit
extensions

ah alax

8-bit 16-bit
names

8

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

 Register

 Immediate

 Direct (eax), Displacement (other regs)

mov eax, ebx

Source

ebx eax

Dest

Register Register

mov ch, 0x4b

Source

4b ch

Dest

Data Register

mov [0x4321], eax

Source

eax [0x4321]

Dest
seg_base + DISP

Register Memory

9

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

 Register Indirect

Any of eax, ebx, ecx, edx, ebp, edi or esi may be used.

 Base-plus-index

Any combination of eax, ebx, ecx, edx, ebp, edi or esi.

 Register relative

A second variation includes: mov eax, [ARR+ebx]

mov [ebx], cl

Source
cl [ebx]

Dest
seg_base + ebx

Register Memory

mov [ebx+esi], ebp

Source
ebp [ebx+esi]

Dest
seg_base+ebx+esi

Register Memory

mov cl, [ebx+4]

Source
[ebx+4] cl

Dest
seg_base+ebx+4

Memory Register

10

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

 Base relative-plus-index

A second variation includes: mov eax, [ebx+edi+4]

 Scaled-index

A second variation includes: mov eax, ebx*2+ecx+offset
Scaling factors can be 2X, 4X or 8X.

mov [ARR+ebx+esi], edx

Source
edx [...]

Dest
seg_base+ARR+ebx+esi

Register Memory

mov [ebx+2*esi], eax

Source
eax [...]

Destseg_base+ebx+2*esi

Register Memory

11

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Register addressing
Note: mov really COPIES data from the source to destination register.
 Never mix an 16-bit register with a 32-bit, etc.

For example

 None of the mov instruction effect the EFLAGS register.

Immediate addressing:
The value of the operand is given as a constant in the instruction stream.

 Use b for binary, q for octal and nothing for decimal.

 ASCII data requires a set of apostrophes:

mov eax, bx ;ERROR: NOT permitted.

mov eax, 0x12345

mov eax, ‘A’ ;Moves ASCII value 0x41 into eax.

12

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Register and immediate addressing example:

Direct addressing:
Transfers between memory and al, ax and eax.

Usually encoded in 3 bytes, sometime 4:

mov eax, 0

section .text ;start of the code segment.

mov ebx, 0x0000
mov ecx, 0
mov esi, eax
...

;Immediate addressing.

;Register addressing.

global main

main:

mov al, DATA1 ;Copies a byte from DATA1.
mov al, [0x4321] ;Some assemblers don’t allow this.
mov al, ds:[0x1234]
mov DATA2, ax ;Copies a word to DATA2.

13

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Displacement:

Displacement instructions are encoded with up to 7 bytes (32 bit register and a 32 bit
displacement).

Direct and displacement addressing example:

Note: Direct addressing (using al) requires 3 bytes to encode while Displacement
(using bx) requires 4.

mov cl, DATA1 ;Copies a byte from DATA1.
mov edi, SUM ;Copies a doubleword from SUM.

mov al, DATA1

0000 section .data

main:

mov bx, DATA2
0017 A0 0000 R

001A 8B 1E 0001 R

0000 10 DATA1 db 0x10

section .text0000

0001 00 DATA2 db 0

global main

14

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Register Indirect addressing:
Offset stored in a register is added to the segment register.

The memory to memory mov is allowed with string instructions.
Any register EXCEPT esp for the 80386 and up.
For eax, ebx, ecx, edx, edi and esi: The data segment is the default.
For ebp: The stack segment is the default.

Some versions of register indirect require special assembler directives byte, word,
or dword

Does [edi] address a byte, a word or a double-word?
Use:

mov ecx, [ebx]
mov [edi], [ebx]

mov al, [edi] ;Clearly a byte-sized move.
mov [edi], 0x10 ;Ambiguous, assembler can’t size.

mov byte [edi], 0x10 ;A byte transfer.

15

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Base-Plus-Index addressing:
Effective address computed as:
seg_base + base + index.

Base registers: Holds starting location of an array.
 ebp (stack)
 ebx (data)
 Any 32-bit register except esp.

Index registers: Holds offset location.
 edi
 esi
 Any 32-bit register except esp.

mov dl, [eax+ebx] ;EAX as base, EBX as index.

mov ecx,[ebx+edi] ;Data segment copy.
mov ch, [ebp+esi] ;Stack segment copy.

16

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes
Base-Plus-Index addressing:

eax

ebx

ecx

edx

esp

ebp

edi

esi

1 0 0 0

cs

ds
es
ss

A B 0 3

0 0 1 0

Memory

F012AB03

0 1 0 0

+

1010H

+

mov edx, [ebx+edi]

F 0 1 2

0 0 0 0

Seg
Base

Paging
Physical Address

Trans.

17

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes

Register Relative addressing:
Effective address computed as:

seg_base + base + constant.

Same default segment rules apply with respect to ebp, ebx, edi and esi.
Displacement constant is any 32-bit signed value.

Base Relative-Plus-Index addressing:
Effective address computed as:

seg_base + base + index + constant.

Designed to be used as a mechanism to address a two-dimensional array.

mov edx, [LIST+esi+2] ;Both LIST and 2 are constants.

mov eax, [ebx+1000H] ;Data segment copy.
mov [ARRAY+esi], BL ;Constant is ARRAY.

mov edx, [LIST+esi-2] ;Subtraction.

mov [LIST+ebp+esi+4], dh ;Stack segment copy.

mov dh, [ebx+edi+20H] ;Data segment copy.
mov ax, [FILE+ebx+edi] ;Constant is FILE.

mov eax, [FILE+ebx+ecx+2] ;32-bit transfer.

18

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data Addressing Modes
Base Relative-Plus-Index addressing:

0 0 2 0

A 3 1 6

0 0 1 0

Memory

A316

1 0 0 0

+

+

MOV ax, [ebx+esi+100H]

+100H

0 0 0 0

eax

ebx

ecx

edx

esp

ebp

edi

esi

cs

ds
es
ss

Seg
Base

Paging

Trans.

1030H

19

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Data/Code Addressing Modes

Scaled-Index addressing:
Effective address computed as:

seg_base + base + constant*index.

Code Memory-Addressing Modes:
Used in jmp and call instructions.

Three forms:
 Direct
 PC-Relative
 Indirect

Direct
Absolute jump address is stored in the instruction following the opcode.

mov eax, [ebx+4*ecx] ;Data segment DWORD copy.

;Whow !

mov eax, [ARRAY+4*ecx] ;Std array addressing.

mov [eax+2*edi-100H], cx

20

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Code Addressing Modes

An intersegment jump:

This far jmp instruction loads cs with 1000H and eip with 00000000H.
A far call instruction is similar.

PC-Relative
A displacement is added to the EIP register.
This constant is encoded into the instruction itself, as above.

Intrasegment jumps:
 Short jumps use a 1-byte signed displacement.
 Near jumps use a 4-byte signed displacement.

The assembler usually computes the displacement and selects the appropriate form.

E A 0000

Opcode Offset (low) Segment(low) Segment(high)Offset (high)

0000 00 10

21

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Code Addressing Modes

Indirect
Jump location is specified by a register.
There are three forms:
 Register:

Any register can be used: eax, ebx, ecx, edx, esp, ebp, edi or esi.

 Register Indirect:
Intrasegment jumps can also be stored in the data segment.

 Register Relative:

jmp eax ;Jump within the code seg.

jmp [ebx] ;Jump address in data seg.

jmp [edi+2]

jmp [TABLE+ebx] ;Jump table.

22

Systems Design & Programming CMPE 310Assembly Basics / Addressing Modes

Stack Addressing Modes

The stack is used to hold temporary variables and stores return addresses for procedures.
push and pop instructions are used to manipulate it.
call and ret also refer to the stack implicitly.

Two registers maintain the stack, esp and ss.
A LIFO (Last-in, First-out) policy is used.
The stack grows toward lower address.
Data may be pushed from any of the registers or segment registers.

Data may be popped into any register except cs.

popfd ;Pop doubleword for stack to EFLAG.
pushfd ;Pushes EFLAG register.
push 1234H ;Pushes 1234H.
push dword [ebx] ;Pushes double word in data seg.
pushad ;eax,ecx,edx,ebx,esp,ebp,esi,edi
pop eax ;Pops 4 bytes.

