Memory Address Decoding

The processor can usually address a memory space that is much larger than the memory space covered by an individual memory chip.

In order to splice a memory device into the address space of the processor, decoding is necessary.

For example, the 8088 issues 20-bit addresses for a total of $1 M B$ of memory address space.

However, the BIOS on a 2716 EPROM has only 2 KB of memory and 11 address pins.

A decoder can be used to decode the additional 9 address pins and allow the EPROM to be placed in any 2 KB section of the 1 MB address space.

Memory Address Decoding

(Book shows $\overline{O E}$ connection for $\overline{R D}$ but chip definition does NOT have this pin)

Memory Address Decoding

To determine the address range that a device is mapped into:

This 2KB memory segment maps into the reset location of the 8086/8088 (FFFF0H).

NAND gate decoders are not often used
Large fan-in NAND gates are not efficient
Multiple NAND gate IC's might be required to perform such decoding
Rather the 3-to-8 Line Decoder (74LS138) is more common.

Memory Address Decoding
The 3-to-8 Line Decoder (74LS138)

				Inputs						Output						
				Enable			Select									
	A 0 B 1 C 2 3 4 G2A 5 G2B 6 G1 7		을응0	G2A	G2B	G1	C	B	A	$\overline{0}$	1	2		$\overline{5}$	$\overline{6}$	7
			1	X	X	X	X	X	1	1	1		1	1	1	
			X	1	X	X	X	X	1	1	1		1	1	1	
			X	X	0	X	X	X	1	1	1		1	1	1	
			0	0	1	0	0	0	0	1	1		1	1	1	
			0	0	1	0	0	1	1	0	1		1	1	1	
			0	0	1	0	1	0	1	1	0		1	1	1	
			0	0	1	0	1	1	1	1	1		1	1	1	
			0	0	1	1	0	0	1	1	1		1	1	1	
			0	0	1	1	0	1	1	1	1		0	1	1	
				0	0	1	1	1	0	1	1	1		1	0	1
				0	0	1	1	1	1	1	1	1		1	1	0

Note that all three Enables (G2A, G2B, and G1) must be active, e.g. low, low and high, respectively.
Each output of the decoder can be attached to an 2764 EPROM (8 K X 8).

Memory Address Decoding

A_{13} through A_{15} select a 2764
 A_{16} through A_{19} enable the decoder

Data Bus

Address space
F0000H-FFFFFH

$$
\overline{\mathrm{RD}} \text { of } 8088 / 86
$$

The EPROMs cover a 64 KB section of memory.

Memory Address Decoding

Yet a third possibility is a PLD (Programmable Logic Device).
PLDs come in three varieties:
\square PLA (Programmable Logic Array)
\square PAL (Programmable Array Logic)
■ GAL (Gated Array Logic)

PLDs have been around since the mid-1970s but have only recently appeared in memory systems (PALs have replaced PROM address decoders).

PALs and PLAs are fuse-programmed (like the PROM).
Some are erasable (like the EPROM).

A PAL example (16L8) is shown in the text and is commonly used to decode the memory address, particularly for 32 -bit addresses generated by the 80386 DX and above.

Memory Address Decoding
AMD 16L8 PAL decoder.
It has 10 fixed inputs (Pins 1-9, 11), two fixed outputs (Pins 12 and 19) and 6 pins that can be either (Pins 13-18).

Programmed to decode address lines $A_{19}-A_{13}$ onto 8 outputs.

AND/NOR device with logic expressions (outputs) with up to 16 ANDed inputs and 7
ORed product terms.

8088 and 80188 (8-bit) Memory Interface
The memory systems sees the 8088 as a device with:
$\square 20$ address connections (A19 to A0).
$\square 8$ data bus connections (AD7 to AD0).
■ 3 control signals, IO/M, RD, and WR.
We'll look at interfacing the 8088 with:
-32K of EPROM (at addresses F8000H through FFFFFH).
$\square 512 \mathrm{~K}$ of SRAM (at addresses 00000 H through 7FFFFH).

The EPROM interface uses a 74LS138 (3-to-8 line decoder) plus 82732 (4 K X 8) EPROMs.

The EPROM will also require the generation of a wait state.
The EPROM has an access time of 450ns.
The 74LS138 requires $12 n$ s to decode.
The 8088 runs at 5 MHz and only allows 460 ns for memory to access data.
A wait state adds 200ns of additional time.

8088 and 80188 (8-bit) EPROM Memory Interface

The 8088 cold starts execution at FFFF0H. JMP to F8000H occurs here.

8088 and 80188 (8-bit) RAM Memory Interface
The 16 62256s on the previous slide are actually SRAMs. Access times are on order of $10 n s$.

Flash memory can also be interfaced to the 8088 (see text).
However, the write time (400 ms !) is too slow to be used as RAM (as shown in the text).

Parity Checking

Parity checking is used to detect single bit errors in the memory.
The current trend is away from parity checking.

Parity checking adds $\mathbf{1}$ bit for every $\mathbf{8}$ data bits.

- For EVEN parity, the 9th bit is set to yield an even number of 1's in all 9 bits.
\square For $O D D$ parity, the 9th bit is set to make this number odd.

For 72-pin SIMMs, the number of data bits is $32+4=36$ ($\mathbf{4}$ parity bits).

Parity for Memory Error Detection

74AS280 Parity Generator/Checker

9-bit parity generator/checker

This circuit generates $E V E N$ or $O D D$ parity for the 9 -bit number placed on its inputs.
Typically, for generation, the 9th input bit is set to 0 .

This circuit also checks $E V E N$ or $O D D$ parity for the 9-bit number.
In this case, the 9th input bit is connected to the 9th bit of memory.
For example, if the original byte has an even \# of 1's (with 9th bit at GND), the parity bit is set to 1 (from the EVEN output).
If the $E V E N$ output goes high during the check, then an error occurred.

Systems Design \& Programming
Parity for Memory Error Detection

Error Detection

This parity scheme can only detect a single bit error.

Block-Check Character (BCC) or Checksum.

Can detect multiple bit errors.
This is simply the two's complement sum (the negative of the sum) of the sequence of bytes.
No error occurred if adding the data values and the checksum produces a 0 .
For example:
Given 4 hex data bytes: 10, 23, 45, 04
Compute the sum:
Invert and add 1
to get checksum byte:
Check is made by adding and checking for 00 (discard the carry):

10
23
45
$\overline{01111100}+1 \longrightarrow$
10
0
$\frac{04}{7 C}$

$$
10000011+1
$$

$$
10000100=84 H
$$45

This is not fool proof.
If 45 changes to 44 AND 04 changes to 05 , the error is missed.

Error Detection

Cyclic Redundancy Check (CRC)

Commonly used to check data transfers in hardware such as harddrives.
Treats data as a stream of serial data n-bits long.
The bits are treated as coefficients of a characteristic polynomial, $M(X)$ of the form:

$$
M(X)=b_{n}+b_{n-1} X+b_{n-2} X^{2}+\ldots+b_{1} X^{n-1}+b_{0} X^{n}
$$

where b_{0} is the least significant bit while b_{n} is the most significant bit.
For the 16-bit data stream: $26 F 0 \mathrm{H}=0010011011110000$

$$
\begin{aligned}
M(X)= & 0+0 X^{1}+1 X^{2}+0 X^{3}+0 X^{4}+1 X^{5}+1 X^{6}+0 X^{7}+1 X^{8}+ \\
& 1 X^{9}+1 X^{10}+1 X^{11}+0 X^{12}+0 X^{13}+0 X^{14}+0 X^{15} \\
M(X)= & 1 X^{2}+1 X^{5}+1 X^{6}+1 X^{8}+1 X^{9}+1 X^{10}+1 X^{11}
\end{aligned}
$$

Error Detection

Cyclic Redundancy Check (CRC) (cont.)

The $C R C$ is found by applying the following equation.

$$
C R C=\frac{M(X) X^{n}}{G(X)}=Q(X)+R(X) \quad \begin{aligned}
& \mathrm{Q}(\mathrm{X}) \text { is the quotient } \\
& \mathrm{R}(\mathrm{X}) \text { is the remainder }
\end{aligned}
$$

$G(X)$ is the called the generator polynomial and has special properties.

A commonly used polynomial is:

$$
G(X)=X^{16}+X^{15}+X^{2}+1
$$

The remainder $R(X)$ is appended to the data block.
When the $C R C$ and $R(X)$ is computed by the receiver, $R(X)$ should be zero.
Since $G(X)$ is of power 16 , the remainder, $R(X)$, cannot be of order higher than 15 .
Therefore, no more than $\mathbf{2}$ bytes are needed independent of the data block size.

Error Detection

Cyclic Redundancy Check (CRC) (cont.)
$\frac{M(X) X^{16}}{G(X)}=\frac{X^{27}+X^{26}+X^{25}+X^{24}+X^{22}+X^{21}+X^{18}}{X^{16}+X^{15}+X^{2}+1}$

$$
x^{11}+X^{9}+X^{6}+X^{2}+X+1
$$

$$
X ^ { 1 6 } + X ^ { 1 5 } + X ^ { 2 } + 1 \longdiv { X ^ { 2 7 } + X ^ { 2 6 } + X ^ { 2 5 } + X ^ { 2 4 } + X ^ { 2 2 } + X ^ { 2 1 } + X ^ { 1 8 } }
$$

$$
\frac{x^{27}+x^{26}}{x^{25}+x^{24}+x^{22}+x^{21}+x^{18}+\frac{x^{13}+X^{11}}{x^{13}+x^{11}}}
$$

$$
\frac{x^{25}+x^{24}}{x^{22}+x^{21}+x^{18}+x^{13}+x^{9}}
$$

$$
\frac{x^{22}+x^{21}}{}+x^{18}+x^{13}+x^{9}+x^{8}+x^{6}
$$

$$
\frac{x^{18}+x^{17}}{} \begin{array}{r}
x^{17}+ \\
x^{13}+x^{9}+x^{8}+x^{6}+x^{4}+x^{2}
\end{array}
$$

Final Solution is:

$$
\frac{X^{17}}{X+1}
$$

$$
R(X)=X^{15}+X^{13}+X^{9}+X^{8}+X^{6}+X^{4}+X^{3}+X+1
$$

Value appended is the reverse coefficient value $1101101011000101=D A C 5 H$

Error Correction

Parity, BCC and CRC are only mechanisms for error detection.
The system is halted if an error is found in memory.

Error correction is starting to show up in new systems.
SDRAM has ECC (Error Correction Code).
Correction will allow the system can continue operating.
If two errors occur, they can be detected but not corrected.
Error correction will of course cost more in terms of extra bits.

Error correction is based on Hamming Codes.
There is lots of theory here but our focus will be on implementation.
The objective is to correct any single bit errors in an 8-bit data byte.
The data bits of the byte are labeled $X_{3}, X_{5}, X_{6}, X_{7}, X_{9}, X_{10}, X_{11}$ and X_{12}.
The parity bits are labeled P_{1}, P_{2}, P_{4} and P_{8}.
In other words, we need $\mathbf{4}$ parity bits to correct single bit errors.
Note that the parity bits are at bit positions that are powers of 2 .

Error Correction

Hamming Codes (cont).
$P 1$ is generated by computing the parity of $X_{3}, X_{5}, X_{7}, X_{9}, X_{11}, X_{13}, X_{15}$.
These numbers have a 1 in bit position 1 of the subscript in binary.

Not used since we are correcting byte data.

Error Correction

Hamming Codes (cont).
Parity encoded data:

110110010011

If X_{10} flips from $0->1$, then the check gives the location of the bit error as:

The position of the bit flip is given by:
$\mathbf{P}_{4} \mathbf{P}_{3} \mathbf{P}_{2} \mathbf{P}_{\mathbf{1}}$, which is $\mathbf{1 0 1 0}$ or $\mathbf{1 0}$ decimal.

Parity for Memory Error Correction
The 74LS636 corrects errors by storing 5 parity bits with each byte of data.
The pinout consists of:

- 8 data I/O pins
- 5 check bit I/O pins
$\square 2$ control pins
- 2 error outputs

Single error flag (SEF)
Double error flag (DEF).

See the text for an example of its use in a circuit.

