Mobility 2
DoFs, Wheels, and Wings

Many slides adapted from slides © R. Siegwart, ETH Zürich – Autonomous Systems Laboratory
Bookkeeping

- By now
 - Have read SNS ch. 2, SNS 4.1
 - Have met with your group outside class
 - Group is ready to go over ideas with me

- By next time
 - Finish 4.1 if you haven’t!
 - Sign up for meeting:

- Announcements
 - Assignment 1 out next week
 - Quiz 1 next Tuesday
For Next Time...

- Finish SNS 4.1 if you haven’t
- Schedule meeting with Dr M
- Prep for quiz
 - Overview
 - Concepts
 - Mobility
- Class or readings are fair game
 - Slides should be a good (but not complete) resource
 - This one: trying to get to ideas, not nits
Today’s Class

- More mobility terminology
- A bit more about wheels
- Wings/propellers
- Other mobile actuators
 - Walking wheels, passive flight, swimming, …
- Sensing round 1 🙄
Degrees of Freedom

- Formally this time.

- DoFs: the number of independent parameters that define the state of a physical system.
 - Fine, but it underdefines “state”

- DoFs in robotics can be (and formally are) all of:
 - The number of independently controlled actuators.
 - Possible changes of orientation of some set of parts:
 - Now includes “the whole robot”.
 - Max: pitch, yaw and roll.
 - Possible directions a robot can move in:
 - Max: translation in x, y, z.
Pitch, Yaw, Roll

Pitch, Yaw, Roll

https://www.youtube.com/watch?v=rlVw-SNU8cM
Odometry (Dead Reckoning)

- Use proprioceptive sensors to estimate location
 - Motion sensors to estimate change in position over time
 - Sensitive to errors due to:
 - Sensor inaccuracies
 - Integration of velocity measurements over time
 - Equipment calibration
 - Motion sensors or known commands
Wheels

- Most appropriate solution for most applications
- Three wheels guarantee stability
- With more than three wheels an appropriate suspension is required
 - Why?
- Selection of wheels depends on the application

Adapted from © R. Siegwart, ETH Zürich – ASL
Mountings and Axles

Mounting axis
Axle

Direction of rotation
Direction of translation
4 Basic Wheel Types

- **Standard wheel**
 - Two degrees of freedom
 - Rotation around the (motorized) wheel axle and the contact point

- **Castor wheel**
 - Three degrees of freedom
 - Rotation around the wheel axle, the contact point and the castor axle

Adapted from © R. Siegwart, ETH Zürich – ASL
Basic Wheel Types: Omni

- Swedish (Mecanum, Ilon, Omni) wheel
 - Three degrees of freedom
 - Rotation around the (motorized) wheel axle, (sometimes motorized) rollers, contact point

Adapted from © R. Siegwart, ETH Zürich – ASL
Basic Wheel Types

- Alternating left and right-handed rollers
 - Wheel applies force at right angles to the wheelbase diagonal
 - Can move in any direction by varying speed, direction of rotation of each wheel

- Types of motion
 - All four wheels in same direction: forward or backward
 - Wheels on one side opposite to other side: rotation
 - Wheels on one diagonal opposite direction to wheels on other diagonal: sideways movement

https://en.wikipedia.org/wiki/Mecanum_wheel
Basic Wheel Types

https://www.youtube.com/watch?v=8sH1a511_q4
Basic Wheel Types

- Ball or spherical wheel
 - Suspension not solved

https://en.wikipedia.org/wiki/Ballbot
Characterization: Stability

◆ Stability of a vehicle is guaranteed with 3 wheels
 ◆ If center of gravity is within the triangle which formed by the ground contact point of the wheels

◆ Stability is improved by 4+ wheels
 ◆ However, arrangements require a flexible suspension
 ◆ Why?

Adapted from © R. Siegwart, ETH Zürich – ASL
Characterization: Geometry

- Bigger wheels overcome higher obstacles
 - But require higher torque or reductions in the gear box

- Most wheel arrangements require high control effort
 - Non-holonomic – we’ll get into that in Ch. 3

- Combining actuation and steering on a single wheel
 - Makes the design complex
 - Adds errors for odometry
 - Data from motion sensors used to estimate position
 - “Dead reckoning”
Maneuvering and Control

- Two more axes of characterization

- Maneuverability
 - How many different maneuvers a robot can do
 - “An act or instance of changing direction”
 - “To change the position of by a maneuver”
 - “To steer in various directions as required”
 - Most maneuverable?

- Controllability
 - How easy it is to get the robot to do what you intend
 - Mechanically: e.g., slippage
 - Programmatically: e.g., 4 independently controlled wheels moving in unison

- Maneuverability and controllability ≈ inverse correlation
Slip/Skid

Q: How do you turn a tank?
- Treads are “wheels” with large surface contact
- Violate the “point contact” assumption
- What’s the difficulty?

A: Rotate treads opposite directions
- How can this work?

What are the tradeoffs?
- Friction on flat surfaces
- High torque requirements
- Tread wear / Terrain damage
- Odometry
Arrangements

- Of 2 wheels
- Of 3 wheels

Omnidirectional Drive
Synchro Drive

Adapted from © R. Siegwart, ETH Zürich – ASL
Arrangements

- Of 4 wheels

- Of 6 wheels

Adapted from © R. Siegwart, ETH Zürich – ASL
Synchro Drive

- All wheels are actuated synchronously by one motor
 - Defines the speed of the vehicle

- All wheels steered synchronously by a second motor
 - Sets the heading of the vehicle

- Orientation in space of robot frame will always remain the same

- So, not possible to control orientation of robot frame

Adapted from © R. Siegwart, ETH Zürich – ASL
Caterpillar

The NANOKHOD II, European Space Agency (ESA)

May eventually go to Mars

Adapted from © R. Siegwart, ETH Zürich – ASL
Walking Wheels

- Active or passive
- Roll and lift/release
- Roll and rollover

Halluc II, Chiba Inst. Of Tech.
Passive: the Shrimp

- Passive locomotion on rough terrain
- 6 wheels
 - One fixed wheel in the rear
 - Two bogies on each side
 - Front wheel, spring suspension
- ≈ 60 cm long, 20 cm tall
- Highly stable in rough terrain
- Climbs obstacles up to 2x wheel diameter

Adapted from © R. Siegwart, ETH Zürich – ASL
Shrimp “Walking”
Active
Use Case

- What could walking wheels be really good for?

www.youtube.com/watch?v=O7otewMk9pc
Advantages
- Rough terrain
- Ground-inaccessible areas
- Z-axis maneuverability
- Perspective for mapping & sensing
- Flying is cool

Disadvantages
- Control problems
- Z-axis controllability
- Weight & scaling laws
- Flying is dangerous
Types of Flyers

- Fixed wing (sometimes with flaps)
- Flapping wing
- Rotors/props
 - Axial (single)
 - Coaxial (reversed)
 - Tandem (two non-coaxial)
 - Quadcopters (+)
- Lighter-than-air

https://robotics.eecs.berkeley.edu/~ronf/Ornithopter/index.html
Disadvantages

- Fixed wing (sometimes with flaps)
 - Aerodynamics change drastically when miniaturized
 - Forward-only flight

- Flapping wing
 - Complex movements not perfectly understood
 - Scaling laws, wingspan, flapping speed
 - Hovering possible (but not guaranteed)

- Lighter-than-air
 - Slow, subject to wind and air conditions, temperature sensitive

- Rotors/props
 - Dangerous and/or fragile if contacted
Quadcopters

- Most popular by far

- Advantages
 - Hovering
 - VTOL
 - Maneuverability
 - Simple construction
 - No tilt-rotors

- Disadvantages
 - Stabilization & control
 - But, largely automated now
 - Fragility (rotors)
Scaling
Scaling

- **Cube-square law**
 - Relationship between volume and area as function of size
 - Example: cubes
 - Area = $6a^2$
 - Volume = a^3
 - The bigger you go, the more “inside” there is

- **Implications**
 - For miniaturization
 - For power
 - For heat dissipation
 - For structural strength

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>54</td>
<td>150</td>
</tr>
<tr>
<td>Volume</td>
<td>27</td>
<td>125</td>
</tr>
<tr>
<td>A:V Ratio</td>
<td>2</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Wings and Scaling

What we care about: **lift**
- Upward-acting force on an aircraft wing or airfoil
- Directly opposes gravity’s pull on mass (holds robot up)
 - As well as various friction forces

Interrelating factors producing lift
- Wing area: directly related
- Flap speed: indirectly correlated

Scaling
- Wingspan/speed scale logarithmically with mass
Other Choices
Mobile Efficiency

- **Cost of transportation** – how much energy to move?
- Depends heavily on terrain and task
 - On flat terrain: tires
 - On uneven or soft terrain: legs
 - Hovering in still air: blimps
 - For fast flight: wings
 - For material efficiency: fixed wings
 - In water: swimming or propulsion
 - Other (lots)

- Where is efficiency lost?

- Leg lift and carry
- Deceleration
- Contact friction
- Internal friction
- Damping

...