Cognition and Control

Bookkeeping

- Quiz 4
 - Is up
- HW 4 – timing
- HW 5 – team participation
 - NEXT week
- Today: a very fast overview of some really hard topics
Autonomy

- Intelligently, self-sufficiently, and safely **perform tasks**
- Without human control / intervention
- Learn about environment and tasks
- Adapt to changing situations
- Make and execute decisions

How?

Review: Intelligent Action...

- Physical tasks
 - Or physical-related
 - Sensing
 - Path planning
- Understanding / modeling:
 - The **robot**
 - The **environment**
 - The **task**
- Autonomy
- Subtasks:
 - Knowledge Representation
 - Search
 - Planning
 - Learning
 - Inference
 - Coping with uncertainty
Intelligent Action Needs...

- Knowledge Representation
- Search
- Planning
- Learning
- Inference

Knowledge Representation

- What does a robot need to know?
- What would it be useful for a robot to know?
- Types of knowledge
 - Background Knowledge
 - Task-Specific Knowledge
 - Explicit vs. Implicit Knowledge
- Representation Choices
 - Probabilistic?
 - Human-understandable?
KR: Approaches

- Hand-coded knowledge
 - E.g., maps, object recognition, task descriptions, ...
- Machine learning
 - Beforehand
 - On-the-Fly
- Representation choices driven by...
 - Efficiency
 - Requirements
 - Our limited abilities

Planning

- What does a robot need to plan?
 - Motion
 - Mobility: where am I going?
 - Manipulation: how do I move myself?
 - Tasks
 - Low-level: pick up this piece
 - High-level: win this chess game
- Steps to Goals
- Step Ordering
Planning: Approaches

- Explicit plan space
 - Rule-based
 - Probabilistic
 - Ordered (scripted)

- Implicit plan space
 - Learned task performance
 - Learning from demonstration
 - Reinforcement learning
 - Procedural planning

- Non-planned (rigid) behavior

Learning

- Why do learning?
 - Hard to program tasks
 - More effective performance
 - Flexibility and autonomy

- What can be learned?
 - Previously unknown environment, objects, etc.
 - Previously unknown tasks
 - Background knowledge

- Machine Learning Approaches

'HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT’S GOT FLAIR.'
Learning: Approaches

- Machine Learning
 - Approaches: Learning from demonstration, reinforcement learning, real-time search, statistical model-building, feature extraction, ensemble learning, active learning, lifelong learning, reading-based learning, learning to read, …

- Fundamental concept: data-driven learning

![Diagram of the learning process]

Inference

- What is inference?
- When?
 - During planning
 - During execution
- Why?
 - Data integration
 - Higher-level ideas
 - Find applications of rules
- Deduction, Induction, Abduction
Search

Knowledge Representation
- Which bit of knowledge?

Planning
- What rules to apply?
- Of many steps / paths / subgoals, which is best?
 In what order?
- What is the goal?

Inference
- What rules to apply?
- What form to apply?
- Truth maintenance

Learning
- Usually NP-complete
- Algorithms and learning methods