Bookkeeping

- Team meetings status
- Assignment 2

Thursday:
- Quiz 3 (will be easier than 1 and 2)
 - Manipulation concepts, Grasping, Kinematics concepts
 - Closes 11:59pm Nov 4
- Homework 2 (homeworks are always easy)
 - Resolution, Kinematics & IK, Course Progress

Nov 5
- Assignment 3 (due Nov 13)
Bookkeeping

- Today:
 - General notes on project progress
 - Schedule wiki
 - Signout sheet
 - Meetings
 - A final note on mobile kinematics
 - Manipulator kinematics
 - Reading: CB 2.1 & 2.2–2.2.2
Project Progress

- Schedule wiki: http://tiny.cc/robotics-team-schedules
 - Look for your team in left-hand nav column
- Milestones: How is *each component* going?
 - Contain:
 - Writeups – what am I seeing?
 - Demos, images, code, videos, …
- Is everyone fully involved?
Given this setup:

We can map \(\{X_I, Y_I\} \) (global) \(\leftrightarrow \) \(\{X_R, Y_R\} \) (robot)

- Use rotation matrices and velocity vector in \(x, y, \theta \)

Why do we care so much?
Goal: take robot from A_I to B_I

- We know where we want it in the *global* setting
- What do we actually control? (In what frame of reference?)

Point: Convert from A_I to B_I by changing ξ_R

$$\xi_A = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

$$\xi_B = \begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix}$$
Manipulator Kinematics

- Kinematics:
 - Geometrically possible motion of a body or system of bodies

- For manipulator robots
 - End effector position and orientation, wrt. an arbitrary initial frame

- A manipulator is moved by changing its...
 - Joints: revolute and prismatic
Manipulator State

- Configuration: where is every point on manipulator?
 - Instantaneous description of geometry of a manipulator

- State: a set of variables which describe
 - Change of configuration in time in response to joint forces
 - Control inputs
 - External influences
Position & Orientation
Position & Orientation
Forward Kinematics & IK
Mobile vs. Manipulator

- Description: how many terms...
 - ...to describe planar position & orientation?
 - ...to describe 3D position & orientation?

- AKA, how many
 - Degrees of freedom

\(\xi_I = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \)
Kinematics Problem

- The **state space** is the set of all possible states
- The **state** of the manipulator is:
 - A set of variables which describe changes in **configuration** over time, in response to joint forces + external forces
- Where do joint forces come from?
 - Controllers!
- So, given some set of joints, what signals do we send?
- In joint space vs. Cartesian space

![Kinematics Problem Diagram](image-url)
Goal

- Goal: take robot end effector from A_I to B_I
 - We know where we want it in the *global* setting
 - What do we actually control? (In what frame of reference?)

- Point: Convert from A_I to B_I

- Now a $6 \leftrightarrow 6$ transformation
Mobile to Manipulator
Multiframe Kinematics

- How many frames of reference do we have?
 - We’ve been translating among frames based on possible motion

- How do they relate?
Kinematic Chaining

- Do you need to do every transformation?
- What do we really care about?