Chapter 6: Temporal-Difference Learning

Seungjae Ryan Lee

Temporal Difference (TD) Learning

- Combine ideas of Dynamic Programming and Monte Carlo
 - Bootstrapping (DP)
 - Learn from experience without model (MC)

One-step TD Prediction

• Monte Carlo: wait until end of episode

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\underline{\underline{G_t} - V(S_t)} \right],$$

. . .

• 1-step TD / TD(0): wait until next time step

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\frac{\overline{R_{t+1} + \gamma V(S_{t+1})} - V(S_t)}{\text{Bootstrapping target}} \right]$$

One-step TD Prediction Pseudocode

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       A \leftarrow action given by \pi for S
       Take action A, observe R, S'
       V(S) \leftarrow V(S) + \alpha \left[ R + \gamma V(S') - V(S) \right]
       S \leftarrow S'
   until S is terminal
```


Driving Home Example

- Predict how long it takes to drive home
 - Reward: Elapsed time for each segment
 - Value of state: *expected* time to go

	$G_{0:t}$	$V(s_t)$	$V(s_0)$
	Ļ	Ļ	Ļ
	Elapsed Time	Predicted	Predicted
State	(minutes)	Time to Go	Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs TD

Advantages of TD Prediction methods

- vs. Dynamic Programming
 - No model required
- vs. Monte Carlo
 - Allows online incremental learning
 - Does not need to ignore episodes with experimental actions

- Still guarantees convergence
- Converges faster than MC in practice
 - ex) Random Walk
 - No theoretical results yet

Random Walk Example

- Start at C, move left/right with equal probability
- Only nonzero reward is r(E, right, t)
- True state values: $\frac{1}{6}, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$

- 100 episodes for MC and TD(0)
- All value estimates initialized to 0.5

Random Walk Example: Convergence

- Converges to true value
 - \circ Not exactly due to step size lpha=1

Random Walk Example: MC vs. TD(0)

• RMS error decreases faster in TD(0)

Batch Updating

- Repeat learning from same experience until convergence
- Useful when finite amount of experience is available
- Convergence guaranteed with small step-size parameter
- MC and TD converge to different answers

ex)

Episode 1	Batch 1	Batch 2	Batch 2		
Episode 2			Batch 3		
Episode 3					

You are the Predictor Example

• Suppose you observe 8 episodes:

A, 0, B, 0	B,1
B,1	B,1
B,1	B,1
B,1	B,0

- V(B) = 6 / 8
- What is V(A)?

You are the Predictor Example: Batch MC

- State A had zero return in 1 episode $\rightarrow V(A) = 0$
- Minimize mean-squared error (MSE) on the training set
 - Zero error on the 8 episodes
 - Does not use the Markov property or sequential property within episode

You are the Predictor Example: Batch TD(0)

- A went to B 100% of the time \rightarrow V(A) = V(B) = 6 / 8
- Create a best-fit model of the Markov process from the training set
 - Model = maximum likelihood estimate (MLE)
- If the model is exactly correct, we can compute the true value function
 - Known as the *certainty-equivalence estimate*
 - Direct computation is unfeasible ($O(|S|^2)$ memory, $O(|S|^3)$ computations)
- TD(0) converges to the certainty-equivalence estimate
 - \circ $O(|\mathcal{S}|)$ memory needed

Random Walk Example: Batch Updating

• Batch TD(0) has consistently lower RMS error than Batch MC

Sarsa: On-policy TD Control

- Learn action-value function $Q(S_t, A_t)$ with TD(0)
- Use transition $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$ for updates

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[\frac{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)}{\mathsf{TD error}} \Big].$$

- Change policy π greedily with q_{π}
- Converges if:
 - \circ all (s,a) is visited infinitely many times
 - policy converges to greedy policy

Sarsa: On-Policy TD Control Pseudocode

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Windy Gridworld Example

- Gridworld with "Wind"
 - Actions: 4 directions
 - Reward: -1 until goal
 - "Wind" at each column shifts agent upward
 - "Wind" strength varies by column

- Termination not guaranteed for all policies
- Monte Carlo cannot be used easily

Windy Gridworld Example

• Converges at 17 steps (instead of optimal 15) due to exploring policy

Q-learning: Off-policy TD Control

• Q directly approximates q_* independent of behavior policy

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \Big].$$

• Converges if all (s, a) is visited infinitely many times

Q-learning: Off-policy TD Control: Pseudocode

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

 $\begin{array}{l} \mbox{Algorithm parameters: step size } \alpha \in (0,1], \mbox{ small } \varepsilon > 0 \\ \mbox{Initialize } Q(s,a), \mbox{ for all } s \in \mathbb{S}^+, a \in \mathcal{A}(s), \mbox{ arbitrarily except that } Q(terminal, \cdot) = 0 \\ \mbox{Loop for each episode:} \\ \mbox{Initialize } S \\ \mbox{Loop for each step of episode:} \\ \mbox{ <u>Choose } A \mbox{ from } S \mbox{ using policy derived from } Q \mbox{ (e.g., } \varepsilon \mbox{-greedy}) \\ \mbox{ Take action } A, \mbox{ observe } R, S' \\ \mbox{ } Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ \mbox{ } S \leftarrow S' \\ \mbox{ until } S \mbox{ is terminal} \end{array}$ </u>

Cliff Walking Example

- Gridworld with "cliff" with high negative reward
- ϵ -greedy (behavior) policy for both Sarsa and Q-learning ($\epsilon = 0.1$)

Cliff Walking Example: Sarsa vs. Q-learning

- Q-learning learns optimal policy
- Sarsa learns safe policy
- Q-learning has worse online performance
- Both reach optimal policy with ε-decay

Expected Sarsa

(

• Instead of maximum (Q-learning), use expected value of Q

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[\frac{R_{t+1} + \gamma \mathbb{E}_{\pi} [Q(S_{t+1}, A_{t+1}) \mid S_{t+1}]}{ \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big],$$

- Eliminates Sarsa's variance from random selection of A_{t+1} in ε -soft
- "May dominate Sarsa and Q-learning except for small computational cost"

Cliff Walking Example: Parameter Study

Maximization Bias

- All shown control algorithms involve maximization
 - Sarsa: ε-greedy policy
 - Q-learning: greedy target policy
- Can introduce significant positive bias that hinders learning

Maximization Bias Example

- Actions and Reward
 - left / right in A, reward 0
 - 10 actions in B, each gives reward from N(-0.1, 1)
- Best policy is to always choose right in A

Maximization Bias Example

• One positive action value causes maximization bias

https://www.endtoend.ai/sutton-barto-notebooks

Double Q-Learning

- Maximization bias stems from using the same sample in two ways:
 - Determining the maximizing action
 - Estimating action value
- Use two action-values estimates Q_1, Q_2
 - Update one with equal probability:

 $Q_{1}(S_{t}, A_{t}) \leftarrow Q_{1}(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma Q_{2} \left(S_{t+1}, \operatorname{argmax}_{a} Q_{1}(S_{t+1}, a)\right) - Q_{1}(S_{t}, A_{t})\right]$ $Q_{2}(S_{t}, A_{t}) \leftarrow Q_{2}(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma Q_{1} \left(S_{t+1}, \operatorname{argmax}_{a} Q_{2}(S_{t+1}, a)\right) - Q_{2}(S_{t}, A_{t})\right]$

• Can use average or sum of both Q_1, Q_2 for ϵ -greedy behavior policy

endtoend.<mark>ai</mark>

Double Q-Learning Pseudocode

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$ Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S^+$, $a \in \mathcal{A}(s)$, such that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using the policy ε -greedy in $Q_1 + Q_2$ Take action A, observe R, S'With 0.5 probabilility: $Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S',a)) - Q_1(S,A) \right)$ else: $Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{arg\,max}_a Q_2(S',a) \big) - Q_2(S,A) \Big)$ $S \leftarrow S'$ until S is terminal

endtoend. ai

Double Q-Learning Result

Double Q-Learning in Practice: Double DQN

- Singificantly improves to Deep Q-Network (DQN)
 - Q-Learning with Q estimated with artificial neural networks
- Implemented in almost all DQN papers afterwards

	DQN	Double DQN
Median	93.5%	114.7%
Mean	241.1%	330.3%

Results on Atari 2600 games

Afterstate Value Functions

- Evaluate the state after the action (*afterstate*)
- Useful when:
 - the immediate effect of action is known
 - \circ multiple (s,a) can lead to same afterstate

Summary

- Can be applied on-line with minimal amount of computation
- Uses experience generated from interaction
- Expressed simply by single equations
- \rightarrow Used most widely in Reinforcement Learning

- This was one-step, tabular, model-free TD methods
- Can be extended in all three ways to be more powerful

Thank you!

Original content from

<u>Reinforcement Learning: An Introduction by Sutton and Barto</u>

You can find more content in

- <u>github.com/seungjaeryanlee</u>
- <u>www.endtoend.ai</u>

