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Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct

Precision: % of selected items that 
are correct

Recall: % of correct items that are 
selected

Actually Correct Actually Incorrect

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

TP
TP + FP

TP
TP + FN

TP + TN
TP + FP + FN + TN

Min: 0 ☹
Max: 1 😀
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Measure this Tradeoff:
Area Under the Curve (AUC)

AUC measures the area under this 
tradeoff curve

1. Computing the curve
You need true labels & predicted labels 
with some score/confidence estimate
Threshold the scores and for each 
threshold compute precision and recall

2. Finding the area
How to implement: trapezoidal rule (& 
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In practice: external library like the 
sklearn.metrics module
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Measure A Slightly Different Tradeoff:
ROC-AUC

AUC measures the area under this tradeoff curve

1. Computing the curve
You need true labels & predicted labels with some 
score/confidence estimate
Threshold the scores and for each threshold compute 
metrics

2. Finding the area
How to implement: trapezoidal rule (& others)

In practice: external library like the 
sklearn.metrics module

Tr
ue
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False posi(ve rate0
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1

Improve overall 
model: push the 
curve that way

Min ROC-AUC: 0.5 ☹
Max ROC-AUC: 1 😀

Main variant: ROC-AUC
Same idea as before but with some 

flipped metrics
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algebra 
(not important)



A combined measure: F

Weighted (harmonic) average of Precision & Recall

Balanced F1 measure: β=1

𝐹 =
1 + 𝛽0 ∗ 𝑃 ∗ 𝑅
(𝛽0 ∗ 𝑃) + 𝑅

𝐹2 =
2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅



P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

If we have more than one class, how do we combine 
mul=ple performance measures into one quan=ty?

Macroaveraging: Compute performance for each class, 
then average.

Microaveraging: Collect decisions for all classes, 
compute con(ngency table, evaluate.

Sec. 15.2.4


