A Tutorial on Boosting

Yoav Freund Rob Schapire

www.research.att.com/~yoav
www.research.att.com/~schapire

Example: "How May I Help You?"

[Gorin et al.]

• <u>goal</u>: automatically categorize type of call requested by phone customer

(Collect, CallingCard, PersonToPerson, etc.)

- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)

• observation:

- <u>easy</u> to find "rules of thumb" that are "often" correct
 - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard'"
- hard to find single highly accurate prediction rule

The Boosting Approach

- select small subset of examples
- derive rough rule of thumb
- examine 2nd set of examples
- derive 2nd rule of thumb
- repeat T times
- questions:
 - how to choose subsets of examples to examine on each round?
 - how to combine all the rules of thumb into single prediction rule?
- <u>boosting</u> = general method of converting rough rules of thumb into highly accurate prediction rule

Tutorial outline

- first half (Rob): behavior on the training set
 - background
 - AdaBoost
 - analyzing training error
 - experiments
 - connection to game theory
 - confidence-rated predictions
 - multiclass problems
 - boosting for text categorization
- <u>second half</u> (Yoav): understanding AdaBoost's generalization performance

The Boosting Problem

- "strong" PAC algorithm
 - for any distribution
 - $\forall \epsilon > 0, \delta > 0$
 - given polynomially many random examples
 - finds hypothesis with error $\leq \epsilon$ with probability $\geq 1-\delta$
- "weak" PAC algorithm
 - same, but only for $\epsilon \ge \frac{1}{2} \gamma$
- [Kearns & Valiant '88]:
 - does weak learnability imply strong learnability?

Early Boosting Algorithms

- [Schapire '89]:
 - first provable boosting algorithm
 - call weak learner three times on three modified distributions
 - get slight boost in accuracy
 - apply recursively
- [Freund '90]:
 - "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
 - first experiments using boosting
 - limited by practical drawbacks

AdaBoost

- [Freund & Schapire '95]:
 - introduced "AdaBoost" algorithm
 - strong practical advantages over previous boosting algorithms
- experiments using AdaBoost:

[Drucker & Cortes '95] [Schapire & Singer '98]

[Jackson & Craven '96] [Maclin & Opitz '97]

[Freund & Schapire '96] [Bauer & Kohavi '97]

[Quinlan '96] [Schwenk & Bengio '98]

[Breiman '96] [Dietterich '98]

•

• continuing development of theory and algorithms:

[Schapire, Freund, Bartlett & Lee '97] [Schapire & Singer '98]

[Breiman '97] [Mason, Bartlett & Baxter '98]

[Grove & Schuurmans '98] [Friedman, Hastie & Tibshirani '98]

•

A Formal View of Boosting

- given training set $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak hypothesis ("rule of thumb")

$$h_t: X \to \{-1, +1\}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$$

• output final hypothesis H_{final}

- constructing **D**_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

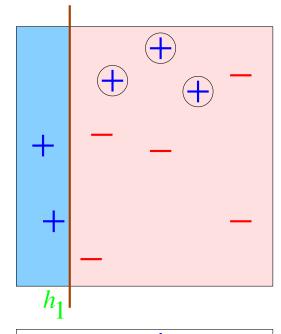
where $Z_t = \text{normalization constant}$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

- final hypothesis:
 - $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

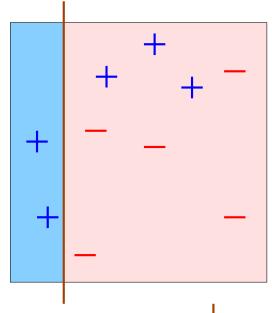
Toy Example

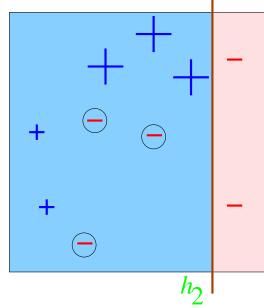
Round 1



$$\epsilon_{1} = 0.30$$
 $\alpha_{1} = 0.42$

Round 2



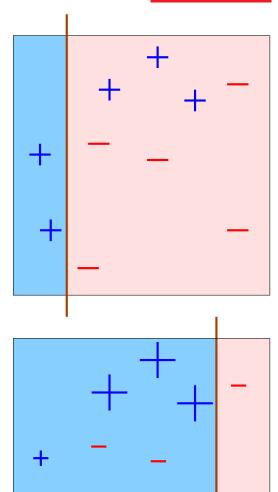


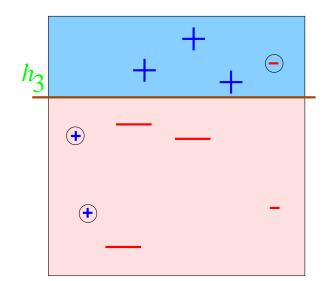
$$\epsilon_{2} = 0.21$$

 $\alpha_{2} = 0.65$

D₃ + - -

Round 3



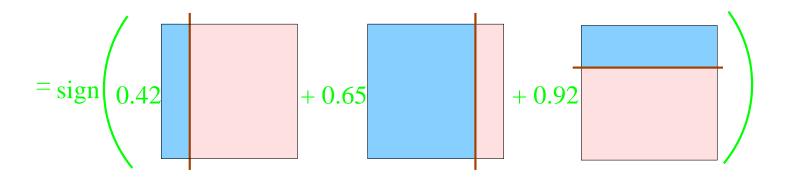


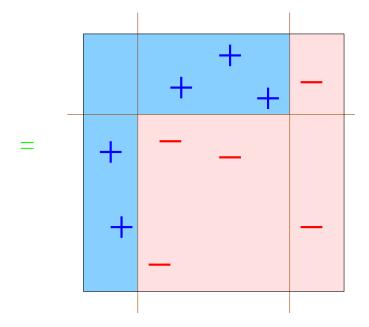
+

 $\epsilon_3 = 0.14$ $\alpha_3 = 0.92$

Final Hypothesis

H final





* See demo at

www.research.att.com/~yoav/adaboost

Analyzing the training error

- Theorem:
 - run AdaBoost
 - let $\epsilon_t = 1/2 \gamma_t$
 - then

training error
$$(H_{\text{final}}) \leq \prod_{t} \left[2\sqrt{\epsilon_{t}(1 - \epsilon_{t})} \right]$$

$$= \prod_{t} \sqrt{1 - 4\gamma_{t}^{2}}$$

$$\leq \exp\left(-2\sum_{t} \gamma_{t}^{2}\right)$$

- so: if $\forall t: \gamma_t \geq \gamma > 0$ then training error $(H_{\text{final}}) \leq e^{-2\gamma^2 T}$
- adaptive:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

Proof

- let $f(x) = \sum_{t} \alpha_t h_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(f(x))$
- Step 1: unwrapping recursion:

$$D_{\text{final}}(i) = \frac{1}{m} \cdot \frac{\exp\left(-y_i \sum_{t} \alpha_t h_t(x_i)\right)}{\prod_{t} Z_t}$$
$$= \frac{1}{m} \cdot \frac{e^{-y_i f(x_i)}}{\prod_{t} Z_t}$$

- <u>Step 2</u>: training error(H_{final}) $\leq \prod_{t} Z_{t}$
- Proof:

•
$$H_{\text{final}}(x) \neq y \Rightarrow yf(x) \leq 0 \Rightarrow e^{-yf(x)} \geq 1$$

• SO:

training error
$$(H_{\text{final}}) = \frac{1}{m} \sum_{i} \begin{cases} 1 & \text{if } y_i \neq H_{\text{final}}(x_i) \\ 0 & \text{else} \end{cases}$$

$$\leq \frac{1}{m} \sum_{i} e^{-y_i f(x_i)}$$

$$= \sum_{i} D_{\text{final}}(i) \prod_{t} Z_t$$

$$= \prod_{t} Z_t$$

Proof (cont.)

- Step 3: $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$
- Proof:

$$Z_{t} = \sum_{i} D_{t}(i) \exp(-\alpha_{t} y_{i} h_{t}(x_{i}))$$

$$= \sum_{i:y_{i} \neq h_{t}(x_{i})} D_{t}(i) e^{\alpha_{t}} + \sum_{i:y_{i} = h_{t}(x_{i})} D_{t}(i) e^{-\alpha_{t}}$$

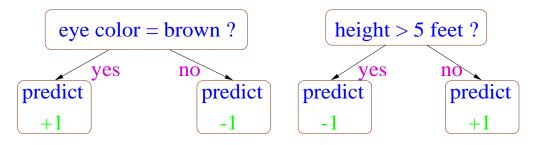
$$= \epsilon_{t} e^{\alpha_{t}} + (1 - \epsilon_{t}) e^{-\alpha_{t}}$$

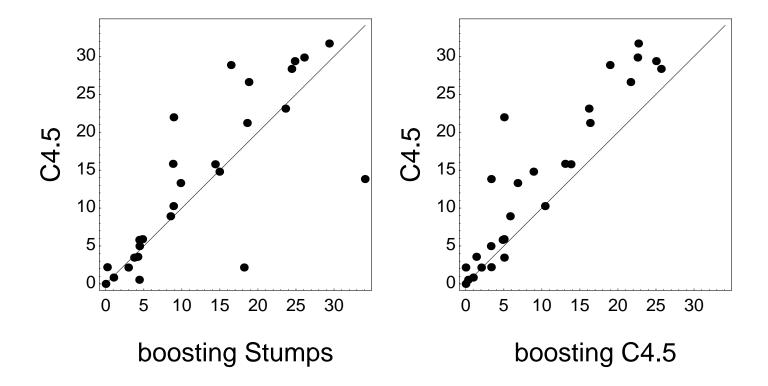
$$= 2\sqrt{\epsilon_{t}(1 - \epsilon_{t})}$$

UCI Experiments

[Freund & Schapire]

- tested AdaBoost on UCI benchmarks
- used:
 - C4.5 (Quinlan's decision tree algorithm)
 - "decision stumps": very simple rules of thumb that test on single attributes





Game Theory

• game defined by matrix M:

	Rock	Paper	Scissors
Rock	1/2	1	0
Paper	0	1/2	1
Scissors	1	0	1/2

- row player chooses row i
- <u>column player</u> chooses column *j* (simultaneously)
- row player's goal: minimize loss $\mathbf{M}(i,j)$
- usually allow <u>randomized</u> play:
 - players choose <u>distributions</u> **P** and **Q** over rows and columns
- learner's (expected) loss

$$= \sum_{i,j} \mathbf{P}(i)\mathbf{M}(i,j)\mathbf{Q}(j)$$
$$= \mathbf{P}^{\mathrm{T}}\mathbf{M}\mathbf{Q} \equiv \mathbf{M}(\mathbf{P},\mathbf{Q})$$

The Minmax Theorem

• von Neumann's minmax theorem:

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})
= v
= "value" of game M$$

- in words:
 - $v = \min \max \text{means}$:
 - row player has strategy \mathbf{P}^* such that \forall column strategy \mathbf{Q} loss $\mathbf{M}(\mathbf{P}^*, \mathbf{Q}) \leq v$
 - $v = \max \min \text{ means}$:
 - this is <u>optimal</u> in sense that column player has strategy \mathbf{Q}^* such that \forall row strategy \mathbf{P} loss $\mathbf{M}(\mathbf{P}, \mathbf{Q}^*) \geq v$

The Boosting Game

- row player \leftrightarrow booster
- \bullet column player \leftrightarrow weak learner
- matrix M:
 - row \leftrightarrow example (x_i, y_i)
 - column \leftrightarrow weak hypothesis h

•
$$\mathbf{M}(i,h) = \begin{cases} 1 & \text{if } y_i = h(x_i) \\ 0 & \text{else} \end{cases}$$

Boosting and the Minmax Theorem

- <u>if</u>:
 - \forall distributions over examples $\exists h$ with accuracy $\geq \frac{1}{2} \gamma$
- then:
 - $\min_{\mathbf{P}} \max_{h} \mathbf{M}(\mathbf{P}, h) \ge \frac{1}{2} \gamma$
- by minmax theorem:
 - $\max_{\mathbf{Q}} \min_{i} \mathbf{M}(i, \mathbf{Q}) \ge \frac{1}{2} \gamma > \frac{1}{2}$
- which means:
 - \exists weighted majority of hypotheses which correctly classifies <u>all</u> examples

AdaBoost and Game Theory

[Freund & Schapire]

- AdaBoost is special case of general algorithm for solving games through repeated play
- can show
 - distribution over examples converges to (approximate) minmax strategy for boosting game
 - weights on weak hypotheses converge to (approximate) maxmin strategy
- different instantiation of game-playing algorithm gives <u>on-line learning algorithms</u> (such as weighted majority algorithm)

Confidence-rated Predictions

[Schapire & Singer]

- useful to allow weak hypotheses to assign confidences to predictions
- formally, allow $h_t: X \to \mathbb{R}$

$$sign(h_t(x)) = prediction$$

 $|h_t(x)| = "confidence"$

• use identical update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

and identical rule for combining weak hypotheses

- questions:
 - how to choose h_t 's (specifically, how to assign confidences to predictions)
 - how to choose α_t 's

Confidence-rated Predictions (cont.)

• Theorem:

training error
$$(H_{\text{final}}) \leq \prod_{t} Z_{t}$$

- Proof: same as before
- therefore, on each round t, should choose h_t and α_t to minimize:

$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

- given h_t , can find α_t which minimizes Z_t
 - analytically (sometimes)
 - numerically (in general)
- ullet should design weak learner to minimize Z_t
 - e.g.: for decision trees, criterion gives:
 - splitting rule
 - assignment of confidences at leaves

Minimizing Exponential Loss

AdaBoost attempts to minimize:

$$\prod_{t=1}^{T} Z_t = \frac{1}{m} \sum_{i} \exp(-y_i f(x_i))$$

$$= \frac{1}{m} \sum_{i} \exp(-y_i \sum_{t} \alpha_t h_t(x_i))$$
(*)

- really a steepest descent procedure:
 - each round, add term $\alpha_t h_t$ to sum to minimize (*)
- why this loss function?
 - upper bound on training (classification) error
 - easy to work with
 - connection to logistic regression

[Friedman, Hastie & Tibshirani]

Multiclass Problems

- say $y \in Y = \{1, ..., k\}$
- direct approach (AdaBoost.M1):

$$h_t: X \to Y$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

$$H_{\text{final}}(x) = \arg\max_{y \in Y} \sum_{t:h_t(x)=y} \alpha_t$$

- can prove same bound on error if $\forall t : \epsilon_t \leq 1/2$
 - in practice, not usually a problem for "strong" weak learners (e.g., C4.5)
 - significant problem for "weak" weak learners (e.g., decision stumps)

Reducing to Binary Problems

[Schapire & Singer]

- e.g.:
 - say possible labels are {a, b, c, d, e}
 - each training example replaced by five $\{-1, +1\}$ -labeled examples:

$$x , c \rightarrow \begin{cases} (x,a) , -1 \\ (x,b) , -1 \\ (x,c) , +1 \\ (x,d) , -1 \\ (x,e) , -1 \end{cases}$$

AdaBoost.MH

• formally:

$$h_t: X \times Y \to \{-1, +1\} (\text{or } \mathbb{R})$$

$$D_{t+1}(i, y) = \frac{D_t(i, y)}{Z_t} \cdot \exp(-\alpha_t \ v_i(y) \ h_t(x_i, y))$$
 where
$$v_i(y) = \begin{cases} +1 \ \text{if } y_i = y \\ -1 \ \text{if } y_i \neq y \end{cases}$$

$$H_{\text{final}}(x) = \arg\max_{y \in Y} \sum_t \alpha_t h_t(x, y)$$

• can prove:

training error
$$(H_{\text{final}}) \leq \frac{k}{2} \cdot \prod Z_t$$

Using Output Codes

[Schapire & Singer]

- alternative: reduce to "random" binary problems
- choose "code word" for each label

 each training example mapped to one example per column

$$x , c \rightarrow \begin{cases} (x, \pi_1) , +1 \\ (x, \pi_2) , -1 \\ (x, \pi_3) , -1 \\ (x, \pi_4) , +1 \end{cases}$$

- to classify new example x:
 - evaluate hypothesis on $(x, \pi_1), \ldots, (x, \pi_4)$
 - choose label "most consistent" with results
- training error bounds independent of # of classes
- may be more efficient for very large # of classes

Example: Boosting for Text Categorization

[Schapire & Singer]

- weak hypotheses: very simple weak hypotheses that test on simple patterns, namely, (sparse) *n*-grams
 - find parameter α_t and rule h_t of given form which minimize Z_t
 - use efficiently implemented exhaustive search
- "How may I help you" data:
 - 7844 training examples (hand-transcribed)
 - 1000 test examples (both hand-transcribed and from speech recognizer)
 - categories: AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.

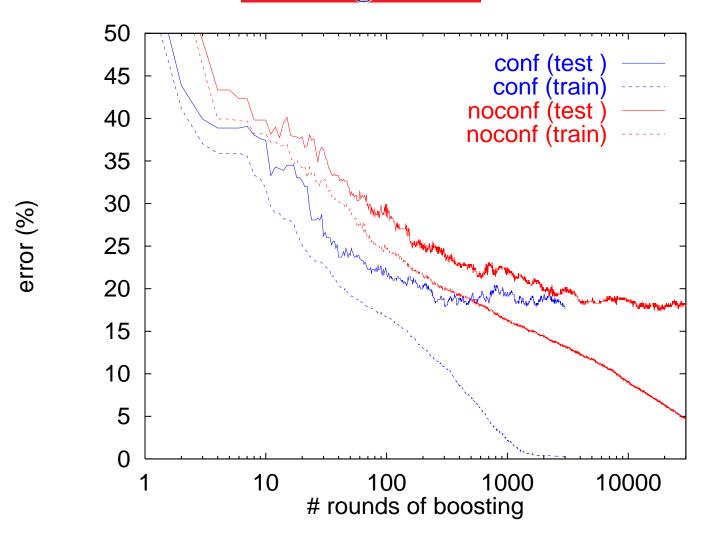
Weak Hypotheses

rnd	term	AC	AS	BC	CC	CO	CM	DM	DI	НО	PP	RA	3N	TI	TC	ОТ
1	collect			T	T		_	_		T		T			_	_
		I		T	_	I	T	_	T			I				
2	card	T	_	_		-	_	_	•	_	_	_				•
		_							_	_	_		_			_
3	my home				_	_	_	_	T	_	•				T	T
			_						_		_		_	_	_	_
4	person? person												_			
	person · person					_		_		•	_		_		_	
											_					
5	code		_	_	_			_	-	_		_		_		_
			_		_	_		_	_	_	_		_	_	_	_
6	I	_	_	_	_	_	_	_	_	_	_		_	_	_	_
		_	_	T	_	_	-	_	_	_	_		_	_	_	
7	time	-	_			_	_	_	_	_	T	_	-			_
		_			_			_		_	_		_		_	
8	wrong number		_		_	_	_	_	T	_	_	Т		_		T
				_			_		_		_			_	_	_
9	how		_				_									
						_	_ _			_				_		_ _
							_	_							_	

More Weak Hypotheses

rnd	term	AC	AS	BC	CC	CO	CM	DM	DI	НО	PP	RA	3N	TI	TC	ОТ
10	call	_	_		_	_	_	_	_	_	_		_	_	_	_
		_	_		_		_	_	_	_	_		_	_	_	_
11	seven	T	-	_	-	_	-	_	-	•	_	_	-	-	I	-
		_					_	_	_	_			_	_	_	
12	trying to	_	-	_	-	-	-	-	_	-	•	•	-	•		_
		_	_	_	_	_	_	_	_	_	_		_	_	_	
13	and	_	-	-	_	-	-	_		-	_	_	-	-	-	_
		_	_	_	_		_			_		_	_	_	_	
14	third	T		-	I	■	T	•		I	•	I		T	T	_
		_		_	_		_		_	_	_	_	_	_		
15	to	_	_	-	_	_	_	_	_	_	_		_	_	_	_
		_		_	_	_	_		_	_	_	_		_	_	_
16	for	-	-	-	•	-	_	_	-	_	_	-	•		-	_
		_	_	_	_	_	_	_	_		_	_	_	_	_	
17	charges	I	_	_	-		_	-	_	•	_	-	-	I		•
		_				_			_		_			_	_	
18	dial	-	-	_	_	_	-	-	•	•	T	_	-	■	I	_
			_	_	_	_	_	_	_	_	_		_	_	_	
19	just	-	_	_	_	-	_	-	-	_	_	_	•	_	_	_
		_		_			_	_	_	_	_		_	_	_	

Learning Curves



- test error reaches 20% for the first time on round...
 - 1,932 without confidence ratings
 - 191 with confidence ratings
- test error reaches 18% for the first time on round...
 - 10,909 without confidence ratings
 - 303 with confidence ratings

Finding Outliers

examples with most weight are often outliers (mislabeled and/or ambiguous)

- I'm trying to make a credit card call (Collect)
- hello (Rate)
- yes I'd like to make a long distance collect call please (CallingCard)
- calling card please (Collect)
- yeah I'd like to use my calling card number (Collect)
- can I get a collect call (CallingCard)
- yes I would like to make a long distant telephone call and have the charges billed to another number (CallingCard DialForMe)
- yeah I can not stand it this morning I did oversea call is so bad (BillingCredit)
- yeah special offers going on for long distance (AttService Rate)
- mister allen please william allen (PersonToPerson)
- yes ma'am I I'm trying to make a long distance call to a non dialable point in san miguel philippines (AttService Other)
- yes I like to make a long distance call and charge it to my home phone that's where I'm calling at my home (DialForMe)
- I like to make a call and charge it to my ameritech (Competitor)