Latent Models: Sequence Models Beyond HMMs and Machine Translation Alignment

CMSC 473/673

UMBC
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
 Maximum Entropy Markov Models
 Conditional Random Fields

Recurrent Neural Networks
 Basic Definitions
 Example in PyTorch
Why Do We Need Both the Forward and Backward Algorithms? **Compute posteriors**

\[\alpha(i, s) \ast \beta(i, s) = \text{total probability of paths through state } s \text{ at step } i \]

\[p(z_i = s \mid w_1, \ldots, w_N) = \frac{\alpha(i, s) \ast \beta(i, s)}{\alpha(N + 1, \text{END})} \]

\[\alpha(i, s) \ast p(s' \mid s) \ast p(\text{obs at } i+1 \mid s') \ast \beta(i+1, s') = \text{total probability of paths through the } s \rightarrow s' \text{ arc (at time } i) \]

\[p(z_i = s, z_{i+1} = s' \mid w_1, \ldots, w_N) = \frac{\alpha(i, s) \ast p(s' \mid s) \ast p(\text{obs}_{i+1} \mid s') \ast \beta(i + 1, s')}{\alpha(N + 1, \text{END})} \]
EM for HMMs

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

\[
p^*(z_i = s | w_1, \ldots, w_N) = \frac{\alpha(i, s) \cdot \beta(i, s)}{\alpha(N + 1, \text{END})}
\]

2. M-step: maximize log-likelihood, assuming these uncertain counts

\[
p^*(z_i = s, z_{i+1} = s' | w_1, \ldots, w_N) = \frac{\alpha(i, s) \cdot p(s'|s) \cdot p(\text{obs}_{i+1} | s') \cdot \beta(i + 1, s')}{\alpha(N + 1, \text{END})}
\]
EM For HMMs (Baum-Welch Algorithm)

\[\alpha = \text{computeForwards}() \]
\[\beta = \text{computeBackwards}() \]
\[L = \alpha[N+1][\text{END}] \]

for \(i = N; \ i \geq 0; \ --i \) {
 for (\(\text{next} = 0; \ \text{next} < K^*; \ ++\text{next} \)) {
 \[
c_{\text{obs}}(\text{obs}_{i+1} | \text{next}) += \alpha[i+1][\text{next}] \times \beta[i+1][\text{next}] / L
 \]
 for (\(\text{state} = 0; \ \text{state} < K^*; \ ++\text{state} \)) {
 \[
u = p_{\text{obs}}(\text{obs}_{i+1} | \text{next}) \times p_{\text{trans}}(\text{next} | \text{state})
 \]
 \[
c_{\text{trans}}(\text{next} | \text{state}) += \alpha[i][\text{state}] \times u \times \beta[i+1][\text{next}] / L
 \]
 }
 }
}

update \(p_{\text{obs}}, p_{\text{trans}} \) using \(c_{\text{obs}}, c_{\text{trans}} \)
Semi-Supervised Learning

labeled data:
- human annotated
- relatively small/few examples

unlabeled data:
- raw; not annotated
- plentiful
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
 Maximum Entropy Markov Models
 Conditional Random Fields

Recurrent Neural Networks
 Basic Definitions
 Example in PyTorch
Warren Weaver’s Note

When I look at an article in Russian, I say “This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.”

(Warren Weaver, 1947)

Noisy Channel Model

- Written in (clean) English
- Observed Russian (noisy) text
- Decode
- Translation/decode model
- Rerank
- (clean) language model
- English

Slides courtesy Rebecca Knowles
Noisy Channel Model

Written in (clean) English

- **Observed Russian (noisy) text**
- **Decoded text**
- **Reranked (clean) language model**

Equation

\[p(X | Y) \propto p(Y | X) \times p(X) \]

Slides courtesy Rebecca Knowles
Noisy Channel Model

\[p(X \mid Y) \propto p(Y \mid X) \times p(X) \]
Translation

Translate French (observed) into English:

Le chat est sur la chaise.

The cat is on the chair.

$p(English|French)$

Slides courtesy Rebecca Knowles
Translation

Translate French (observed) into English:

Le chat est sur la chaise.

The cat is on the chair.

$p(English|French) \propto p(French|English) \ast p(English)$
Translation

Translate French (observed) into English:

Le chat est sur la chaise.

The cat is on the chair.

\[p(\text{English}|\text{French}) \propto p(\text{French}|\text{English}) \ast p(\text{English}) \]
Alignment

Le chat est sur la chaise.
The cat is on the chair.

\[p(\text{English}|\text{French}) \propto p(\text{French}|\text{English}) \times p(\text{English}) \]
Parallel Texts

Whereas recognition of the inherent dignity and of the equal and inalienable rights of all members of the human family is the foundation of freedom, justice and peace in the world,

Whereas disregard and contempt for human rights have resulted in barbarous acts which have outraged the conscience of mankind, and the advent of a world in which human beings shall enjoy freedom of speech and belief and freedom from fear and want has been proclaimed as the highest aspiration of the common people,

Whereas it is essential, if man is not to be compelled to have recourse, as a last resort, to rebellion against tyranny and oppression, that human rights should be protected by the rule of law,

Whereas it is essential to promote the development of friendly relations between nations,

Yolki, pampa ni tlatepanitalotl, ni tlasenkauajkayotl iuan ni kuali nemilistli ipan ni tlalpan, yaya ni moneki moixmatis uan monemilis, ijkinoj nochi kuali tiitstosej ika touampoyouaj.

Pampa tlaj amo tikixmatij tlatepanitalistli uan tlen kuali nemilistli ipan ni tlalpan, yeka onkatok kualantli, onkatok tlateuilistli, onkatok majmajtli uan sekinok tlamantli teixpanolistli; yeka moneki ma kuali timouikakaj ika nochi touampoyouaj, ma amo onkaj majmajyotl uan teixpanolistli; moneki ma onkaj yejyektialistli, ma titlajtlajtokaj uan ma tijneltokakaj tlen tojuantij tijnekij tijneltokasej uan amo tlen ma topanti, kenke, pampa tijnekij ma onkaj tlatepanitalistli.

Pampa ni tlatepanitalotl moneki ma tiyejyekokaj, ma tijchiuakaj uan ma tijmanauikaj; ma nojkia kiixmatikaj tekiuakajtinij, uejueyij tekiuakajtinij, ijkinoj amo onkas nopeka se akajya touampoj san tlen ueli kinekis techchiuilis, technauatis, kinekis technauatis ma tijchiuakaj se tlamantli tlen amo kuali; yeka ni tlatepanitalotl tlauel moneki ipan tonemilis ni tlalpan.

Pampa nojkia tlauel moneki ma kuali timouikakaj, ma tielikaj keuak tiiknimej, nochi tlen tlakamej uan siuamej tlen tiitstokej ni tlalpan.

http://www.ohchr.org/EN/UDHR/Pages/Language.aspx?LangID=nhn

Slides courtesy Rebecca Knowles
Whereas recognition of the inherent dignity and of the equal and inalienable rights of all members of the human family is the foundation of freedom, justice and peace in the world,

Whereas disregard and contempt for human rights have resulted in barbarous acts which have outraged the conscience of mankind, and the advent of a world in which human beings shall enjoy freedom of speech and belief and freedom from fear and want has been proclaimed as the highest aspiration of the common people,

Whereas it is essential, if man is not to be compelled to have recourse, as a last resort, to rebellion against tyranny and oppression, that human rights should be protected by the rule of law,

Whereas it is essential to promote the development of friendly relations between nations,
Alignments

If we had word-aligned text, we could easily estimate $P(f|e)$.

But we don’t usually have word alignments, and they are expensive to produce by hand...

If we had $P(f|e)$ we could produce alignments automatically.
IBM Model 1 (1993)

- Lexical Translation Model
- Word Alignment Model
- The simplest of the original IBM models
- For all IBM models, see the original paper (Brown et al, 1993):
Simplified IBM 1

• We’ll work through an example with a simplified version of IBM Model 1
• Figures and examples are drawn from A Statistical MT Tutorial Workbook, Section 27, (Knight, 1999)
• **Simplifying assumption:** each source word must translate to exactly one target word and vice versa
IBM Model 1 (1993)

\(f \): vector of French words

(visualization of alignment)

\(e \): vector of English words

Le chat est sur la chaise verte

\(a \): vector of alignment indices

The cat is on the green chair

0 1 2 3 4 6 5
IBM Model 1 (1993)

\(f \): vector of French words

(visualization of alignment)

\(e \): vector of English words

\(a \): vector of alignment indices

\[
P(a, f | e) = \prod_{j=1}^{m} t(f_j | e_{a_j}) = t(f_1 | e_{a_1}) \cdots t(f_m | e_{a_m})
\]

\(t(f_j | e_i) \): translation probability of the word \(f_j \) given the word \(e_i \)

\[
P(f | e) = \sum_a P(a, f | e)
\]

Le chat est sur la chaise verte

The cat is on the green chair

Slides courtesy Rebecca Knowles
Model and Parameters

Want: $P(f|e)$

But don’t know how to train this directly...

Solution: Use $P(a, f|e)$, where a is an alignment

Remember:

$$P(f|e) = \sum_a P(a, f|e)$$
Model and Parameters: Intuition

Translation prob.: \[t(f_j | e_i) \]

Example:

\[t(chaise | chair) > t(chaise | the) \]

Interpretation:
How probable is it that we see \(f_j \) given \(e_i \),
Model and Parameters: Intuition

Alignment/translation prob.: $P(a, f | e)$

Example (visual representation of a):

$$P(\text{le chat} \mid \text{“the cat”}) < P(\text{le chat} \mid \text{“the cat”})$$

Interpretation:
How probable are the alignment a and the translation f (given e)

Slides courtesy Rebecca Knowles
Model and Parameters: Intuition

Alignment prob.: $P(a|e, f)$

Example:

$P(\times|\text{“le chat”, “the cat”}) < P(\ |\ |\ |\text{“le chat”, “the cat”})$

Interpretation:

How probable is alignment a (given e and f)

Slides courtesy Rebecca Knowles
Model and Parameters

How to compute:

\[P(a, f|e) = \prod_{j=1}^{m} t(f_j|e_{a_j}) = t(f_1|e_{a_1}) \cdots t(f_m|e_{a_m}) \]

\[P(f|e) = \sum_a P(a, f|e) \]

\[P(a|e, f) = \frac{P(a, f|e)}{\sum_{a'} P(a', f|e)} \]
Parameters

For IBM model 1, we can compute all parameters given translation parameters:

\[t(f_j | e_i) \]

How many of these are there?
Parameters

For IBM model 1, we can compute all parameters given translation parameters:

\[t(f_j | e_i) \]

How many of these are there?

\[|French \ vocabulary| \times |English \ vocabulary| \]
Data

Two sentence pairs:

<table>
<thead>
<tr>
<th>English</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>b c</td>
<td>x y</td>
</tr>
<tr>
<td>b</td>
<td>y</td>
</tr>
</tbody>
</table>

Slides courtesy Rebecca Knowles
All Possible Alignments

(French: x, y)

(English: b, c)

Remember:

simplifying assumption that each word must be aligned exactly once
Expectation Maximization (EM)

0. Assume *some* value for \(t(f_j | e_i) \) and compute other parameter values

Two step, iterative algorithm

1. E-step: count alignments and translations under uncertainty, assuming these parameters

\[
t(f_j | e_i) \quad P(a, f | e)
\]

2. M-step: maximize log-likelihood (update parameters), using uncertain counts

Slides courtesy Rebecca Knowles
Review of IBM Model 1 & EM

Iteratively learned an alignment/translation model from sentence-aligned text (without “gold standard” alignments)

Model can now be used for alignment and/or word-level translation

We explored a simplified version of this; IBM Model 1 allows more types of alignments
Why is Model 1 insufficient?

Why won’t this produce great translations?
 Indifferent to order (language model may help?)
 Translates one word at a time
 Translates each word in isolation
 ...

Slides courtesy Rebecca Knowles
Uses for Alignments

Component of machine translation systems

Produce a translation lexicon automatically

Cross-lingual projection/extraction of information

Supervision for training other models (for example, neural MT systems)
Evaluating Machine Translation

Human evaluations:
Test set (source, human reference translations, MT output)

Humans judge the quality of MT output (in one of several possible ways)

Slides courtesy Rebecca Knowles
Evaluating Machine Translation

Automatic evaluations: Test set (source, human reference translations, MT output)

Aim to mimic (correlate with) human evaluations

Many metrics:
- TER (Translation Error/Edit Rate)
- HTER (Human-Targeted Translation Edit Rate)
- BLEU (Bilingual Evaluation Understudy)
- METEOR (Metric for Evaluation of Translation with Explicit Ordering)

Slides courtesy Rebecca Knowles
Machine Translation Alignment Now

Explicitly with fancier IBM models

Implicitly/learned jointly with *attention* in recurrent neural networks (RNNs)
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
- Maximum Entropy Markov Models
- Conditional Random Fields

Recurrent Neural Networks
- Basic Definitions
- Example in PyTorch
Recall: **N-gram** to Maxent to Neural Language Models

given some context...

compute beliefs about what is likely...

predict the next word

\[p(w_i | w_{i-3}, w_{i-2}, w_{i-1}) \propto \text{count}(w_{i-3}, w_{i-2}, w_{i-1}, w_i) \]
Recall: N-gram to Maxent to Neural Language Models

given some context...

compute beliefs about what is likely...

\[p(w_i | w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta \cdot f(w_{i-3}, w_{i-2}, w_{i-1}, w_i)) \]

predict the next word
Hidden Markov Model Representation

\[
p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1 | z_0)p(w_1 | z_1) \cdots p(z_N | z_{N-1})p(w_N | z_N) = \prod_i p(w_i | z_i) p(z_i | z_{i-1})
\]

represent the probabilities and independence assumptions in a graph
A Different Model’s Representation

\[w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow w_4 \rightarrow \ldots \]

[Diagram of nodes and arrows representing a graph]

represent the probabilities and independence assumptions in a graph
A Different Model’s Representation

\[p(z_1, z_2, ..., z_N | w_1, w_2, ..., w_N) = p(z_1 | z_0, w_1) \cdots p(z_N | z_{N-1}, w_N) \]

\[= \prod_{i} p(z_i | z_{i-1}, w_i) \]

represent the probabilities and independence assumptions in a graph
A Different Model’s Representation

\[p(z_1, z_2, \ldots, z_N | w_1, w_2, \ldots, w_N) = p(z_1 | z_0, w_1) \cdots p(z_N | z_{N-1}, w_N) \]
\[= \prod_i p(z_i | z_{i-1}, w_i) \]

\[p(z_i | z_{i-1}, w_i) \propto \exp(\theta^T f(w_i, z_{i-1}, z_i)) \]

represent the probabilities and independence assumptions in a graph
Maximum Entropy Markov Model (MEMM) - A Different Model’s Representation

\[
p(z_1, z_2, ..., z_N | w_1, w_2, ..., w_N) = p(z_1 | z_0, w_1) \cdots p(z_N | z_{N-1}, w_N) \\
= \prod_i p(z_i | z_{i-1}, w_i) \\
p(z_i | z_{i-1}, w_i) \propto \exp(\theta^T f(w_i, z_{i-1}, z_i))
\]

\[
p(z_1, z_2, ..., z_N | w_1, w_2, ..., w_N) = p(z_1 | z_0, w_1) \cdots p(z_N | z_{N-1}, w_N) \\
= \prod_i p(z_i | z_{i-1}, w_i) \\
p(z_i | z_{i-1}, w_i) \propto \exp(\theta^T f(w_i, z_{i-1}, z_i))
\]

represent the probabilities and independence assumptions in a graph.
MEMMs

Discriminative: don’t care about generating observed sequence at all

Maxent: use features

Problem: Label-Bias problem
Label-Bias Problem

Z_i
Label-Bias Problem

incoming mass must sum to 1
Label-Bias Problem

incoming mass must sum to 1

outgoing mass must sum to 1
incoming mass must sum to 1

outgoing mass must sum to 1

observe, but do not generate (explain) the observation

Take-aways:
• the model can learn to ignore observations
• the model can get itself stuck on “bad” paths
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
 Maximum Entropy Markov Models
 Conditional Random Fields

Recurrent Neural Networks
 Basic Definitions
 Example in PyTorch
Discriminative: don’t care about generating observed sequence at all

Condition on the *entire* observed word sequence $w_1 \ldots w_N$

Maxent: use features

Solves the label-bias problem
(Linear Chain) Conditional Random Fields

$p(z_1, ..., z_N \mid w_1, ..., w_N) \propto \prod_i \exp(\theta^T f(z_{i-1}, z_i, w_1, ..., w_N))$
(Linear Chain) Conditional Random Fields

\[p(z_1, \ldots, z_N \mid w_1, \ldots, w_N) \]

\[\propto \prod_i \exp(\theta^T f(z_{i-1}, z_i, w_1, \ldots, w_N)) \]

(condition on entire sequence)
CRFs are Very Popular for \{POS, NER, other sequence tasks\}

\[p(z_1, \ldots, z_N \mid w_1, \ldots, w_N) \propto \prod_i \exp(\theta^T f(z_{i-1}, z_i, w_1, \ldots, w_N)) \]

- **POS**

\[f(z_{i-1}, z_i, w) = (z_{i-1} \text{ == Noun } \& \ z_i \text{ == Verb } \& \ (w_{i-2} \text{ in list of adjectives or determiners})) \]
CRFs are Very Popular for \{POS, NER, other sequence tasks\}
CRFs are Very Popular for \{POS, NER, other sequence tasks\}

\[
p(z_1, \ldots, z_N \mid w_1, \ldots, w_N) \propto \prod_i \exp(\theta^T f(z_{i-1}, z_i, w_1, \ldots, w_N))
\]

- **POS**
 \[
f(z_{i-1}, z_i, w) = \\
(z_{i-1} == \text{Noun} \& z_i == \text{Verb} \& \\
(w_{i-2} \text{ in list of adjectives or determiners}))
\]

- **NER**
 \[
f_{\text{path}}(z_{i-1}, z_i, w) = \\
(z_{i-1} == \text{Per} \& z_i == \text{Per} \& \\
(\text{syntactic path p involving } w_i \text{ exists }))
\]

Can’t easily do these with an HMM

Conditional models can allow richer features
CRFs are Very Popular for \{POS, NER, other sequence tasks\}

\[
p(z_1, \ldots, z_N | w_1, \ldots, w_N) \propto \prod_i \exp(\theta^T f(z_{i-1}, z_i, w_1, \ldots, w_N))
\]

- **POS**
 \[
f(z_{i-1}, z_i, w) = \begin{cases}
1 & (z_{i-1} == \text{Noun} \& z_i == \text{Verb} \& w_{i-2} \text{ in list of adjectives or determiners}) \\
0 & \text{otherwise}
\end{cases}
\]

- **NER**
 \[
f_{\text{path}}(z_{i-1}, z_i, w) = \begin{cases}
1 & (z_{i-1} == \text{Per} \& z_i == \text{Per} \& \text{(syntactic path } p \text{ involving } w_i \text{ exists)}) \\
0 & \text{otherwise}
\end{cases}
\]

Can’t easily do these with an HMM ➔ Conditional models can allow richer features

We’ll cover syntactic paths next class
CRFs are Very Popular for \{POS, NER, other sequence tasks\}

\[
f(z_i - 1, z_i, w) = \begin{cases}
\text{Noun} & \text{if } z_i = \text{Noun} \\
\text{Verb} & \text{if } z_i = \text{Verb} \\
\text{adj, det} & \text{in list of adjectives or determiners}
\end{cases}
\]

\[
f(\text{path} p(z_i - 1, z_i, w)) = \begin{cases}
\text{Per} & \text{if } z_i = \text{Per} \\
\text{Per} & \text{if } z_i = \text{Per} \\
\text{syntactic path } p \text{ involving } w & \text{exists}
\end{cases}
\]

\[
p(z_1, ..., z_N \mid w_1, ..., w_N) \propto \prod_i \exp(\theta^T f(z_{i-1}, z_i, w_1, ..., w_N))
\]

Can't easily do these with an HMM

➔ Conditional models can allow richer features

CRFs can be used in neural networks too:

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/crf/CrfForwardRnnCell

Conditional vs. Sequence

Naive Bayes vs. Sequence

HMMs vs. General Graphs

Logistic Regression vs. Sequence

Linear-chain CRFs vs. General Graphs

Generative directed models

General CRFs

We’ll cover these in 691: Graphical and Statistical Models of Learning
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
 Maximum Entropy Markov Models
 Conditional Random Fields

Recurrent Neural Networks
 Basic Definitions
 Example in PyTorch
Recall: N-gram to Maxent to Neural Language Models

given some context...
create/use “distributed representations”...
combine these representations...
compute beliefs about what is likely...
predict the next word
A More Typical View of Recurrent Neural Language Modeling
A More Typical View of Recurrent Neural Language Modeling

observe these words one at a time
A More Typical View of Recurrent Neural Language Modeling

predict the next word

observe these words one at a time
A More Typical View of Recurrent Neural Language Modeling

observe these words one at a time

predict the next word

from these hidden states
A More Typical View of Recurrent Neural Language Modeling

predict the next word

from these hidden states

observe these words one at a time
A Recurrent Neural Network Cell
A Recurrent Neural Network Cell

\[\begin{align*}
&w_i \\
&h_{i-1} \\
&w_{i-1} \\
&h_i \\
&w_i \\
&w_{i+1} \\
\end{align*} \]
A Recurrent Neural Network Cell

\[W_i \]

\[h_{i-1} \]

\[W_{i+1} \]

\[h_i \]

\[U \]

\[w_{i-1} \]

\[w_i \]
A Recurrent Neural Network Cell

![Diagram of a Recurrent Neural Network Cell](image-url)

- **Decoding**
 - w_i
 - h_{i-1}
 - w_{i+1}

- **Encoding**
 - w_{i-1}
 - h_i
 - w_i

S: Input
W: Weight
U: Unit
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]

\[\sigma(x) = \frac{1}{1 + \exp(-x)} \]
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]

\[\sigma(x) = \frac{1}{1 + \exp(-x)} \]
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]

\[\sigma(x) = \frac{1}{1 + \exp(-x)} \]
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]
\[\widehat{w}_{i+1} = \text{softmax}(S h_i) \]

\[\sigma(x) = \frac{1}{1 + \exp(-x)} \]
A *Simple* Recurrent Neural Network Cell

must learn matrices U, S, W

\[
h_i = \sigma(W h_{i-1} + U w_i)
\]

\[
\hat{w}_{i+1} = \text{softmax}(S h_i)
\]
A Simple Recurrent Neural Network Cell

must learn matrices U, S, W

suggested solution: gradient descent on prediction ability

$h_i = \sigma(W h_{i-1} + U w_i)$

$\hat{w}_{i+1} = \text{softmax}(S h_i)$
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]

\[\hat{w}_{i+1} = \text{softmax}(S h_i) \]

must learn matrices U, S, W

suggested solution: gradient descent on prediction ability

problem: they’re tied across inputs/timesteps
A Simple Recurrent Neural Network Cell

\[h_i = \sigma(W h_{i-1} + U w_i) \]

\[\hat{w}_{i+1} = \text{softmax}(S h_i) \]

must learn matrices \(U, S, W \)

suggested solution: gradient descent on prediction ability

problem: they’re tied across inputs/timesteps

good news for you: many toolkits do this automatically
Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives
Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Vanishing gradients

Multiply the same matrices at each timestep ➔ multiply many matrices in the gradients
Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Vanishing gradients

- Multiply the *same* matrices at *each* timestep ➔ multiply *many* matrices in the gradients

- One solution: clip the gradients to a max value
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
 Maximum Entropy Markov Models
 Conditional Random Fields

Recurrent Neural Networks
 Basic Definitions
 Example in PyTorch
Deep Learning
Natural Language Processing

What society thinks I do
What my friends think I do
What other computer scientists think I do

What mathematicians think I do
What I think I do
What I actually do

from keras import *
from torch import *
from theano import import
Pick Your Toolkit

PyTorch
Deeplearning4j
TensorFlow
DyNet
Caffe

Keras
MxNet
Gluon
CNTK
...

Comparisons:
https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch
https://github.com/zer0n/deepframeworks (older---2015)
Defining A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

```python
import torch.nn as nn
from torch.autograd import Variable

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax()

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden = self.i2h(combined))
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return Variable(torch.zeros(1

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
```
Defining A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

```python
import torch.nn as nn
from torch.autograd import Variable

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax()

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden_size))

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
```
Defining A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

```python
import torch.nn as nn
from torch.autograd import Variable

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax()

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden[1].unsqueeze(0)))
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden[0]

    def initHidden(self):
        return Variable(torch.zeros(1, self.n_hidden))

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
```
Defining A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

```python
import torch.nn as nn
from torch.autograd import Variable

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)

        self.softmax = nn.LogSoftmax()

    def forward(self, combined):
        hidden = self.hidden_size
        output = self.i2o(combined)

        return output

    def initHidden(self):
        return Variable(torch.zeros(1, n_letters))

n_hidden = 128
rnn = RNN(n_letters)
```
Defining A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

```python
import torch.nn as nn
from torch.autograd import Variable

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax()

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden_size))

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
```
In the context of defining a simple RNN in Python, the code snippet from the PyTorch tutorial is shown below:

```python
import torch.nn as nn
from torch.autograd import Variable

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax()

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden_size))

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
```
Training A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

criterion = nn.NLLLoss()

learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn

def train(category_tensor, line_tensor):
 hidden = rnn.initHidden()

 rnn.zero_grad()

 for i in range(line_tensor.size()[0]):
 output, hidden = rnn(line_tensor[i], hidden)

 loss = criterion(output, category_tensor)
 loss.backward()

 # Add parameters' gradients to their values, multiplied by learning rate
 for p in rnn.parameters():
 p.data.add_(-learning_rate, p.grad.data)

 return output, loss.data[0]
Training A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-likelihood

criterion = nn.NLLLoss()

learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn

def train(category_tensor, line_tensor):
 hidden = rnn.initHidden()

 rnn.zero_grad()

 for i in range(line_tensor.size()[0]):
 output, hidden = rnn(line_tensor[i], hidden)

 loss = criterion(output, category_tensor)
 loss.backward()

 # Add parameters' gradients to their values, multiplied by learning rate
 for p in rnn.parameters():
 p.data.add_(-learning_rate, p.grad.data)

 return output, loss.data[0]
Training A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-likelihood

criterion = nn.NLLLoss()

learning_rate = 0.005 # If you set this too high, it might explode!

def train(category_tensor, line_tensor):
 hidden = rnn.initHidden()

 rnn.zero_grad()

 for i in range(line_tensor.size()[0]):
 output, hidden = rnn(line_tensor[i], hidden)

 loss = criterion(output, category_tensor)
 loss.backward()

 # Add parameters' gradients to their values, multiplied by learning rate
 for p in rnn.parameters():
 p.data.add_(-learning_rate, p.grad.data)

 return output, loss.data[0]
Training A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negatives log-likelihood

criterion = nn.NLLLoss()

learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn

def train(category_tensor, line_tensor):
 hidden = rnn.initHidden()

rnn.zero_grad()

 for i in range(line_tensor.size()[0]):
 output, hidden = rnn(line_tensor[i], hidden)

 loss = criterion(output, category_tensor)
 loss.backward()

 # Add parameters' gradients to their values, multiplied by learning rate
 for p in rnn.parameters():
 p.data.add_(-learning_rate, p.grad.data)

 return output, loss.data[0]

generate predictions

eval predictions
Training A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-likelihood

criterion = nn.NLLLoss()

learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn

def train(category_tensor, line_tensor):
 hidden = rnn.initHidden()

 rnn.zero_grad()

 for i in range(line_tensor.size()[0]):
 output, hidden = rnn(line_tensor[i], hidden)

 loss = criterion(output, category_tensor)
 loss.backward()

 # Add parameters' gradients to their values, multiplied by learning rate
 for p in rnn.parameters():
 p.data.add_(-learning_rate, p.grad.data)

 return output, loss.data[0]
Training A Simple RNN in Python

(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

```
criterion = nn.NLLLoss()

learning_rate = 0.005  # If you set this too high, it might explode. If too low, it might not learn

def train(category_tensor, line_tensor):
    hidden = rnn.initHidden()

    rnn.zero_grad()

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    loss = criterion(output, category_tensor)
    loss.backward()

    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add_(-learning_rate, p.grad.data)

    return output, loss.data[0]
```
Another Solution: LSTMs/GRUs

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

GRU: Gated Recurrent Unit (Cho et al., 2014)

Basic Ideas: learn to forget

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Outline

Review: EM for HMMs

Machine Translation Alignment

Limited Sequence Models
 Maximum Entropy Markov Models
 Conditional Random Fields

Recurrent Neural Networks
 Basic Definitions
 Example in PyTorch