
Assignment 5

CMSC 473/673 — Introduction to Natural Language Processing

Due Monday December 10, 2018, 11:59 AM

Item Summary
Assigned Monday November 26th, 2018
Due Monday December 10th, 2018
Topic EM & Syntax
Points 120

In this assignment you will understand and gain experience with syntactic models (formalisms).
As with the previous assignments, you are to complete this assignment on your own: that is, the code

and writeup you submit must be entirely your own. However, you may discuss the assignment at a high level
with other students or on the discussion board. Note at the top of your assignment who you discussed this
with or what resources you used (beyond course staff, any course materials, or public Piazza discussions).

The following table gives the overall point breakdown for this assignment.

Question 1 2 3 4
Points 25 25 40 30

As before, the first page provides a task list. This task list captures the questions, and details (without other
explanatory text) the tasks you are to do and what your completed assignment should answer. Following the
task list are the full questions. The full questions do not require you to answer additional questions.

The task list enumerates what you must do, but it does not necessarily specify how—that’s where the
full questions come in. Therefore, you should still read and reference the full questions.

What To Turn In Turn in a writeup in PDF format that answer the questions; turn in all requested code
necessary to replicate your results. Be sure to include specific instructions on how to build (compile) your
code. Answers to the following questions should be long-form. Provide any necessary analyses and discus-
sion of your results.

How To Submit Submit the assignment on the submission site:

https://www.csee.umbc.edu/courses/undergraduate/473/f18/submit.

Be sure to select “Assignment 5.”

1

https://www.csee.umbc.edu/courses/undergraduate/473/f18/submit

Full Questions

1. (25 points) In this question, you will get familiar with EM for HMMs using the ice cream spreadsheet
created by Jason Eisner, available at http://www.cs.jhu.edu/˜jason/465/hw-hmm/lect24-hmm.
xls. You will answer questions related to different initial parameters (the red cells) and try to find out
how the initial transition probabilities, emission probabilities and observations affect the end results.
This will give you a chance to play around with a working implementation of EM, and to see what
happens from iteration to iteration.

Turn in your responses for the following questions. In answering the following, always consider how
the various graphs, reconstructed weather (per day and pair of days), and final perplexity can change.

(a) What will happen if you strongly believe that one day’s weather should not be the same as the
day after it? This corresponds to p(H|C) and p(C|H) being high.

(b) What will happen if you strongly believe that one day’s weather has nothing to do with the day
after it, i.e., p(H|C) = p(C|H) = p(C|C) = p(H|H)?

(c) What will happen if you strongly believe that the colder the weather gets the more ice cream
Jason wants to eat, e.g., p(1|C) = 0.1 and p(2|C) = 0.2 while p(1|H) = 0.7 and p(2|H) = 0.2?

(d) What will happen if you strongly believe Jason just wants to eat ice cream and it has nothing to
do with weather, i.e., p(1|C) = p(2|C) = p(1|H) = p(2|H) = 0?

(e) What will happen if there are actually some additional, unmodeled factors that affect the number
of ice cream Jason eats? For example, all of a sudden ice cream gets too expensive. To be
specific, consider the case where

• For the first 11 days he can eat whatever amount of ice cream he want.
• Then for the next 11 days things become tight and he can only buy at most 2 ice creams per

day.
• And finally he’s starting to run out of money, so he can only afford 1 ice cream per day.

(f) Try out the new sequence of ice creams eaten: [2, 2, 1, 3, 1, 2, 2, 1, 3, 3, 1, 2, 1, 2, 3, 3, 3, 3,
1, 1, 2, 2, 2, 2, 3, 3, 3, 1, 3, 2, 1, 2, 1, 3] Try different initial probabilities to estimate the actual
probabilities behind that observation and submit the weather you predicted. Explain why you
think that is the distribution.

• How will initial reconstruction of the weather (the leftmost graph) change?
• How will the final graph after 10 iterations change?
• What is the p(1|H) after 10 iterations? Explain why this happened and what happened in

each re-estimation step.

2. (25 points) Read and write a half page summary1 and review of Charniak and Johnson (2005). It is
available at

http://aclweb.org/anthology/P/P05/P05-1022.pdf.

In addition to discussing the basic methodology and findings of this paper, identify findings you found
interesting, surprising, or confusing. What is the overall takeaway (for you) from this paper?

The full Bibtex citation is
1 Single spaced, regular font, and one column is fine.

http://www.cs.jhu.edu/~jason/465/hw-hmm/lect24-hmm.xls
http://www.cs.jhu.edu/~jason/465/hw-hmm/lect24-hmm.xls

@InProceedings{charniak-johnson:2005:ACL,
author = {Charniak, Eugene and Johnson, Mark},
title = {Coarse-to-Fine n-Best Parsing and

MaxEnt Discriminative Reranking},
booktitle = {Proceedings of the 43rd Annual Meeting of

the Association for Computational Linguistics
(ACL’05)},

month = {June},
year = {2005},
address = {Ann Arbor, Michigan},
publisher = {Association for Computational Linguistics},
pages = {173--180},
url = {http://www.aclweb.org/anthology/P05-1022},
doi = {10.3115/1219840.1219862}

}

3. (40 points) In this question you will develop a grammar of English.2 You grammar will need to
address at least three different types of linguistic phenomena (see Linguistic Phenomena below). To
help you write your grammar, it’ll be helpful to have both a (sentence) generator and a parser. We’ll
provide you the parser; you have to write the generator.

What to turn in Turn in

(a) your weighted CFG;

(b) your sentence generator; and

(c) a writeup of how you modified the grammar.

In your writeup, be sure to analyze the rules you added, why you added them, and how you arrived at
the weights. You should provide example output from your generator to help explain your grammar
changes (and to show that your changes work). Discuss any difficulties you had in setting grammar
weights (e.g., were you suprised or frustrated with the Viterbi parse of certain sentences?). Also de-
scribe how your generation program works (e.g., how do you choose which non-terminals to expand,
how did you determine what symbols were non-terminals, etc.).

In capturing the linguistic phenomena, you may examine real life sentences as examples. Be sure to
cite any sources you consult.

A Weighted CFG The grammar you write should be a (non-negatively) weighted context free gram-
mar (WCFG). The weights you assign should be non-negative, but they may be unnormalized prob-
abilities. The parser we provide will renormalize the rules once the full grammar has been read in;
your generator should do the same.

The grammar you write does not have to be in CNF.

Each grammar rule should be on its own line, of the form

w X - - > Y1 . . . Ym

2Really, a very, very, very small subset of English.

where w > 0 is the weight of the X → Y1 . . . Ym rule. The Yis form the right hand side (RHS),
while the X forms the left hand side (LHS). Each of the Yi may be a terminal or non-terminal.3 The
following grammar fragment shows an example. You may use this fragment as a starting point.

1 ROOT --> S .
1 ROOT --> S !
1 ROOT --> is it true that S ?
1 S --> NP VP
1 VP --> Verb NP
1 NP --> Det NPish
1 NP --> NP PP
1 PP --> Prep NP
1 NPish --> Adj NPish
1 NPish --> Noun

Note: the root symbol is defined as the very first LHS non-terminal listed in the grammar. The rewrite
symbol must be two dashes followed by a right angled bracket.

Minimum grammar requirements and lexicon generation: What words you add to the lexicon is
up to you. Do not try to be overly complicated; as you consider more phenomena, this could cause
you trouble. At a minimum though, your grammar needs to handle verbs, nouns, adjectives, and
prepositions.

A WCFG Sentence Generator Write a generation program gen-sent. This program must generate
random word sequences from a provided grammar. This should help you debug your grammar as
you’re writing it.

Your program should have one required argument and three optional flags/arguments:

gen-sent [-t] [-r ROOT-SYMBOL] [-n NUM-TO-GEN] grammar-file

The grammar-file argument should be the path to a WCFG; the WCFG must have the form as
described above.

By default, your program should generate a single sequence (NUM-TO-GEN = 1), from a specified
root node (by default, set ROOT-SYMBOL to the first LHS symbol found in your grammar); by default,
only the words should be printed. Add a -t flag (by default off/false) to display the tree that generates
the word sequence.

A WCFG Parser We’re providing you a WCFG parser; access it on GL at

/afs/umbc.edu/users/f/e/ferraro/pub/473-f18/a5/cky

It is a CKY Viterbi parser written in C.4 As mentioned above, in order to parse, it will automatically
convert weighted (non-negative, but not necessarily probabilistic) general CFG rules to a probabilistic
CNF CFG; it will then automatically reverse the conversion when showing the Viterbi tree.

The basic usage is

$./cky input-sentences grammar-file

3 For the parser, there’s a practical limit of 128 RHS symbols per rule. Please only approach this limit with excellent justification.
4 It was originally written by Mark Johnson; then edited by Matt Post; it has been (very slightly) modified for this class. You

can copy the source from /afs/umbc.edu/users/f/e/ferraro/pub/473-f18/a5/mjp-cky; follow the Makefile
recipe for llncky.

http://web.science.mq.edu.au/~mjohnson/
https://cs.jhu.edu/~post

Here, input-sentences is a file with a single sentence per (‘\n’-separated) line, and grammar-file
is a WCFG of the form above. In typical Unix fashion, this will read sentences from stdin (the con-
sole) when input-sentences is the single character -. For example, the following execution
requires you to type the sentence “the president ate a sandwich .” at the terminal:

$./cky - grammar
the president ate a sandwich .
-9.875088(ROOT (S (NP (Det the) (Noun president)) \

(VP (Verb ate) (NP (Det a) (Noun sandwich)))) .)
ˆD

(The ˆD is the sequence “Ctrl D.”)

Linguistic Phenomena You must write a grammar to capture at least three linguistic phenomena.
Below are five examples; you may select from them, or you may choose others.

Note: The three you capture must work together. That is, your solution for “adjective order” must not
break any of the rules you wrote for “a” vs. “an.”

(a) noun-verb agreement (singular vs. plural) for present tense verbs : Have your grammar handle
number agreement between nouns and verbs. The verbs will need to be in the present tense, as
English past (and future) tense verbs do not change form for agreement.

(b) transitive vs. di-transitive vs. intransitive verbs and some of their direct/indirect object alter-
nation patterns: Certain verbs are transitive, meaning they can take direct objects (“Chris ran
the marathon”); others are di-transitive, meaning they can take direct objects and indirect ob-
jects (“Chris gave Pat the book”); and others are intransitive, meaning they do not take any
objects (“Chris ran toward the hills”). These may take certain modifiers; both these modifiers
and objects exhibit a certain amount of movement capability, e.g., “Chris ran toward the hills
with vigor,” “Toward the hills Chris ran with vigor,” “Chris ran the marathon with vigor,” and
“Chris ran the marathon with vigor.” We can also say “Chris gave the book to Pat.” Extend your
grammar to handle some object and modifier alternation patterns among transitive, di-transitive,
and intransitive verbs.

(c) verb tenses: English verbs commonly used can generally be analyzed on two dimensions: a
temporal one, and a continuation (called aspect). The temporal notion is broken into three cat-
egories: present, past, and future. Aspect can be broken into three categories as well: simple,
perfect, and progressive. For example, the simple present is used in “Chris works [on the as-
signment],” the perfect past in “Chris had worked [on the assignment],” and the progressive
future in “Chris will be working [on the assignment].” Extend your grammar to handle the nine
temporal-aspect tense pairs. Be sure your grammar can handle stacking the tenses together; as
in the future perfect progressive, “Chris will have been working [on the assignment].”

(d) “a” vs. “an”: Generally, we use “a” before nominals that do not begin with a vowel (sound) and
“an” before nominals that do. For example, we say “a banana,” and “an apple,” but we also say
“a red apple.” Make your grammar handle this alternation.

(e) adjective order: There are many different ways that adjectives can modify nominals. Some
modify the number (“two”), others modify a subjective value (“great”), and other modify physi-
cal/observable attributes (e.g., size, color and shape). With these modifiers, it is more natural to
say “two great big green houses” than it is to say “*great green two big houses.” Write rules to
capture adjective order.

4. (30 points) This question asks you to do a thought experiment: you do not have to write any code,
but what you describe in your PDF writeup must be easily implementable. As a diagnostic: if one
of your classmates provided you with a description similar to what you write, would you be able to
implement it?

Task: In dependency parsing, given two words (tokens) wi and wj , we need to predict a relationship
r such that either the tuple r(wi, wj) is likely, or that no relation, with wi as governor and wj as
dependent, holds between them. For this question provide clear descriptions for two different classifier
models for doing so. One model should be a baseline model (e.g., very simple to implement and
requiring minimal-to-no annotated language data or fancy statistical models); the other should be a
more complex model. The baseline model could be a simple count-based model (counting what?),
while the complex model could define features based off of other linguistic annotations.

Formally, describe two different classifiers that, given a potential governor wi and potential dependent
wj , predicts the relationship r such that r(wi, wj) is in that sentence’s dependency parse, or that no
valid relation exists between them. Mathematically, this can be thought of as formulating a MAP
classifier p(r | gov=wi, dep=wj). Your classifiers may rely on lexical, word embedding, part-of-
speech, and/or morphological features of wi and wj . These classifiers must be position aware: it
should matter whether wi is given as the potential governor or as the potential dependent. (Hint: any
features you define should be defined with respect to the relation under consideration.)

What to Turn in: Turn in a description of what your two models would be and what features you
would define (what parts of the data would you use?). Try to justify why you think those features
would be useful. Describe how you would encourage generalization in the models (e.g., feature
design, smoothing, regularization, etc.). State what data you looked at to formulate these features,
how those data were helpful, and how you would properly develop and evaluate your classifiers.

Example Data: You may assume that you would be building these classifiers from the Universal
Dependency data. In this case, given any two pairs of words wi and wj , you would be predicting
the dependency relationship that exists between them, if any. This dependency relationship is given
by the eighth column (the DEPREL label5, in orange below) from the first six columns. You should
ignore any columns after the eighth (denoted in gray, below).

1 A a DET DT Definite=Ind|PronType=Art 2 det 2:det
2 team team NOUN NN Number=Sing 6 nsubj 6:nsubj|8:nsubj:xsubj
3 from from ADP IN 5 case 5:case
4 the the DET DT Definite=Def|PronType=Art 5 det 5:det

The seventh column for a token wj gives the token index of the token wi that is the head of the relation
between wi and wj . For example, in the first two lines, the “2” in the seventh column of the first line
indicates that the second token (“team”) is the syntactic head/governor of the det relationship from
“team” to “A.” That is, there is a relationship det(governor=team, dependent=A) and not
det(governor=A, dependent=team).

The above example shows the first four tokens from a particular sentence from the EWT training set.
The two systems you describe (one as a baseline, one that is linguistically aware) must be able to take
any two tokens and predict the relationship between them. For example, your systems should try to
predict that, for the first two tokens when given as the pair (governor=team, dependent=A),
there is a det relationship from the second to the first (e.g., det(team, A)).6 Note the above UD
example does not include word embeddings, though those are generally available as external/supple-
mentary resources. You may use word embeddings in your thought-experiment.

5http://universaldependencies.org/format.html
6However, if provided the pair (governor=A, dependent=team), it would need to predict “no relation.”

http://universaldependencies.org/format.html

