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Recap from last time 
(and the first unit)…



N-gram Language Models

predict the next word

given some context…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)

wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…



Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃 ⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖))



Neural Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use 
“distributed 
representations”… ei-3 ei-2 ei-1

combine these 
representations… C = f

matrix-vector 
product

ew

θwi



(Some) Properties of Embeddings

Capture “like” (similar) words

Capture relationships

Mikolov et al. (2013)

vector(‘king’) –
vector(‘man’) + 

vector(‘woman’) ≈
vector(‘queen’)

vector(‘Paris’) -
vector(‘France’) + 
vector(‘Italy’) ≈
vector(‘Rome’)



Learn more in:
• Your project
• Paper (673)

• Other classes (478/678)

Four kinds of vector models

Sparse vector representations
1. Mutual-information 

weighted word co-
occurrence matrices

Dense vector representations:
2. Singular value 

decomposition/Latent 
Semantic Analysis

3. Neural-network-inspired 
models (skip-grams, CBOW)

4. Brown clusters



Shared Intuition

Model the meaning of a word by “embedding” in a 
vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many 
computational linguistic applications by a vocabulary 

index (“word number 545”) or the string itself



Intrinsic Evaluation: Cosine Similarity

Divide the dot product 
by the length of the 
two vectors

This is the cosine of the 
angle between them

Are the vectors parallel?

-1: vectors point in 
opposite directions 

+1:  vectors point in 
same directions

0: vectors are orthogonal



Course Recap So Far

Basics of Probability

Requirements to be 
a distribution 
(“proportional to”,  ∝)

Definitions of 
conditional probability, 
joint probability, and 
independence

Bayes rule, 
(probability) chain rule
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LATENT SEQUENCES AND
LATENT VARIABLE MODELS



Is Language Modeling “Latent?”

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)



Is Language Modeling “Latent?”
Most* of What We’ve Discussed: Not Really

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

these values are unknown but the generation process 
(explanation) is transparent

*Neural language modeling as an exception



ATTACK
Three people have been
fatally shot, and five 
people, including a mayor, 
were seriously wounded 
as a result of a Shining 
Path attack today against a 
community in Junin
department, central 
Peruvian mountain region.

Is Document Classification “Latent?”
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ATTACK
Three people have been
fatally shot, and five 
people, including a mayor, 
were seriously wounded 
as a result of a Shining 
Path attack today against a 
community in Junin
department, central 
Peruvian mountain region.

Is Document Classification “Latent?”
As We’ve Discussed: Not Really

argmax𝑋 exp(𝜃 ⋅ 𝑓 𝑥, 𝑦 )

these values are unknown

but the generation process 
(explanation) is transparent



Ambiguity 
Part of Speech

Tagging

British Left Waffles on Falkland Islands

British Left Waffles on Falkland Islands

British Left Waffles on Falkland Islands

Adjective Noun Verb

Noun Verb Noun



orthography

morphology

Adapted from Jason Eisner, Noah Smith

lexemes

syntax

semantics

pragmatics

discourse

observed text



Adapted from Jason Eisner, Noah Smith

Latent Modeling

explain what you 
see/annotate

with things “of 
importance” you don’t

orthography

morphology

lexemes

syntax

semantics

pragmatics

discourse

observed text



Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)



Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

Adjective Noun Verb

Noun Verb Noun Prep Noun Noun

Prep Noun Noun(i):

(ii):



Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

Adjective Noun Verb

Noun Verb Noun Prep Noun Noun

Prep Noun Noun(i):

(ii):



Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

2. Produce a tag sequence for this sentence

Adjective Noun Verb

Noun Verb Noun Prep Noun Noun

Prep Noun Noun(i):

(ii):



Noisy Channel Model

Decode Rerank

𝑝 𝑋 𝑌) ∝ 𝑝 𝑌 𝑋) ∗ 𝑝(𝑋)

possible 

(clean) 
output

observed 

(noisy) text

translation/

decode model

(clean) language 

model



Latent Sequence Model: Machine Translation

Decode Rerank

𝑝 𝑋 𝑌) ∝ 𝑝 𝑌 𝑋) ∗ 𝑝(𝑋)

possible 

(clean) 
output

observed 

(noisy) text

translation/
decode model

(clean) language 

model



Latent Sequence Model: Machine Translation

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY
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The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

How do you know what 
words translate as?

Learn the translations!



Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)
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words translate as?

Learn the translations!

How?

Learn a “reverse” latent 
alignment model
p(French words, alignments |

English words)
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Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

How do you know what 
words translate as?

Learn the translations!

How?

Learn a “reverse” latent 
alignment model
p(French words, alignments |

English words)

𝑝 English French) ∝
𝑝 French English) ∗ 𝑝(English)

Why Reverse?

Alignment?

Words can have different 
meaning/senses



How to Learn With Latent Variables 
(Sequences)

Expectation Maximization



Example: Unigram Language Modeling



Example: Unigram Language Modeling

maximize (log-)likelihood to learn the probability parameters



Example: Unigram Language Modeling 
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

add complexity to better 
explain what we see



Example: Unigram Language Modeling 
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

add complexity to better 
explain what we see

examples of latent classes z:
• part of speech tag
• topic (“sports” vs. “politics”)
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Marginal(ized) Probability

w z1 & w z2 & w z3 & w z4 & w

𝑝 𝑤 = 𝑝 𝑧1 , 𝑤 + 𝑝 𝑧2 , 𝑤 + 𝑝 𝑧3 , 𝑤 + 𝑝(𝑧4 , 𝑤)
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Example: Unigram Language Modeling 
with Hidden Class
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goal: maximize marginalized (log-)likelihood
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if we did observe z, estimating the 
probability parameters would be easy… 

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate 

likelihood… but we don’t! :(



http://blog.innotas.com/wp-content/uploads/2015/08/chicken-or-egg-cropped1.jpg
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likelihood… but we don’t! :(
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if we did observe z, estimating the 
probability parameters would be easy… 

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate 

likelihood… but we don’t! :(



Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these 
uncertain counts



Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these 
parameters

2. M-step: maximize log-likelihood, assuming these 
uncertain counts

count(𝑧𝑖 , 𝑤𝑖)𝑝(𝑧𝑖)



Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these 
parameters

2. M-step: maximize log-likelihood, assuming these 
uncertain counts

count(𝑧𝑖 , 𝑤𝑖)𝑝(𝑧𝑖)

We’ve already seen this type of counting, when 
computing the gradient in maxent models.



Expectation Maximization (EM): M-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these 
parameters

2. M-step: maximize log-likelihood, assuming these 
uncertain counts

𝑝 𝑡+1 (𝑧)𝑝(𝑡)(𝑧)
estimated 

counts



EM Math



EM Math

E-step: count under uncertainty

M-step: maximize log-likelihood



EM Math

E-step: count under uncertainty

M-step: maximize log-likelihood

old parameters

posterior distribution



EM Math

E-step: count under uncertainty

M-step: maximize log-likelihood

old parameters

new parameters
new parametersposterior distribution



Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)



Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

only observe these 
(record heads vs. tails 
outcome)

don’t observe this



Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

observed:
a, b, e, etc.
We run the code, vs. 
The run failed

unobserved:
vowel or constonant? 
part of speech?



Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

𝑝 heads = 𝜆 𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾

𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾

𝑝 tails = 1 − 𝜓



Three Coins/Unigram With Class Example

Imagine three coins

𝑝 heads = 𝜆

𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓

Three parameters to estimate: λ, γ, and ψ



Three Coins/Unigram With Class Example

If all flips were observed

H H T H T H

H T H T T T

𝑝 heads = 𝜆

𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓



Three Coins/Unigram With Class Example

If all flips were observed

H H T H T H

H T H T T T

𝑝 heads = 𝜆

𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓



Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4
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Use these values to compute posteriors



Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

marginal likelihood

rewrite joint using Bayes rule
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But not all flips are observed  set parameter values

H H T H T H

H T H T T T
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𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

𝑝 H | heads = .8 𝑝 T | heads = .2
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But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

𝑝 H = 𝑝 H | heads ∗ 𝑝 heads + 𝑝 H | tails * 𝑝(tails)
= .8 ∗ .6 + .6 ∗ .4

𝑝 H | heads = .8 𝑝 T | heads = .2
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H H T H T H

H T H T T T

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

Use posteriors to update parameters

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

(in general, p(heads | obs. H) and 
p(heads| obs. T) do NOT sum to 1)
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Use posteriors to update parameters

𝑝 heads =
# heads from penny

# total flips of penny
fully observed setting

our setting: partially-observed 𝑝 heads =
# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

# total flips of penny

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

(in general, p(heads | obs. H) and 
p(heads| obs. T) do NOT sum to 1)
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Use posteriors to update parameters

our setting: partially-observed

𝑝(𝑡+1) heads =
# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

# total flips of penny

=
𝔼𝑝(𝑡) [# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny]

# total flips of penny

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334
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Use posteriors to update parameters

our setting: 
partially-
observed

𝑝(𝑡+1) heads =
# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

# total flips of penny

=
𝔼𝑝(𝑡)[# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny]

# total flips of penny

=
2 ∗ 𝑝 heads | obs.H + 4 ∗ 𝑝 heads | obs.𝑇

6
≈ 0.444

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334



Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these 
uncertain counts



Related to EM

Latent clustering

K-means: 
https://www.csee.umbc.edu/courses/undergraduate/473/f17/kmeans/

Gaussian mixture modeling


