
Introduction to Latent Sequences &
Expectation Maximization

CMSC 473/673

UMBC

October 2nd, 2017

Recap from last time
(and the first unit)…

N-gram Language Models

predict the next word

given some context…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)

wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃 ⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖))

Neural Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use
“distributed
representations”… ei-3 ei-2 ei-1

combine these
representations… C = f

matrix-vector
product

ew

θwi

(Some) Properties of Embeddings

Capture “like” (similar) words

Capture relationships

Mikolov et al. (2013)

vector(‘king’) –
vector(‘man’) +

vector(‘woman’) ≈
vector(‘queen’)

vector(‘Paris’) -
vector(‘France’) +
vector(‘Italy’) ≈
vector(‘Rome’)

Learn more in:
• Your project
• Paper (673)

• Other classes (478/678)

Four kinds of vector models

Sparse vector representations
1. Mutual-information

weighted word co-
occurrence matrices

Dense vector representations:
2. Singular value

decomposition/Latent
Semantic Analysis

3. Neural-network-inspired
models (skip-grams, CBOW)

4. Brown clusters

Shared Intuition

Model the meaning of a word by “embedding” in a
vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many
computational linguistic applications by a vocabulary

index (“word number 545”) or the string itself

Intrinsic Evaluation: Cosine Similarity

Divide the dot product
by the length of the
two vectors

This is the cosine of the
angle between them

Are the vectors parallel?

-1: vectors point in
opposite directions

+1: vectors point in
same directions

0: vectors are orthogonal

Course Recap So Far

Basics of Probability

Requirements to be
a distribution
(“proportional to”, ∝)

Definitions of
conditional probability,
joint probability, and
independence

Bayes rule,
(probability) chain rule

Course Recap So Far

Basics of Probability

Requirements to be a
distribution (“proportional to”, ∝)

Definitions of conditional
probability, joint probability, and
independence

Bayes rule, (probability)
chain rule

Basics of language modeling

Goal: model (be able to
predict) and give a score to
language (whole sequences of
characters or words)

Simple count-based
model

Smoothing (and why
we need it): Laplace (add-λ),
interpolation, backoff

Evaluation: perplexity

Course Recap So Far

Basics of Probability

Requirements to be a distribution
(“proportional to”, ∝)

Definitions of conditional
probability, joint probability, and
independence

Bayes rule, (probability) chain rule

Basics of language modeling

Goal: model (be able to predict) and
give a score to language (whole sequences of
characters or words)

Simple count-based model

Smoothing (and why we need it):
Laplace (add-λ), interpolation, backoff

Evaluation: perplexity

Tasks and Classification (use
Bayes rule!)

Posterior decoding vs.
noisy channel model

Evaluations: accuracy,
precision, recall, and Fβ (F1)
scores

Naïve Bayes (given the
label, generate/explain each
feature independently) and
connection to language
modeling

Course Recap So Far

Basics of Probability
Requirements to be a distribution

(“proportional to”, ∝)
Definitions of conditional probability, joint

probability, and independence
Bayes rule, (probability) chain rule

Basics of language modeling
Goal: model (be able to predict) and give a

score to language (whole sequences of characters or
words)

Simple count-based model
Smoothing (and why we need it): Laplace

(add-λ), interpolation, backoff
Evaluation: perplexity

Tasks and Classification (use Bayes rule!)
Posterior decoding vs. noisy channel model
Evaluations: accuracy, precision, recall, and

Fβ (F1) scores
Naïve Bayes (given the label,

generate/explain each feature independently) and
connection to language modeling

Maximum Entropy Models

Meanings of feature
functions and weights

Use for language
modeling or conditional
classification (“posterior in
one go”)

How to learn the
weights: gradient descent

Course Recap So Far

Basics of Probability

Requirements to be a distribution (“proportional to”, ∝)

Definitions of conditional probability, joint probability, and

independence

Bayes rule, (probability) chain rule

Basics of language modeling

Goal: model (be able to predict) and give a score to
language (whole sequences of characters or words)

Simple count-based model

Smoothing (and why we need it): Laplace (add-λ),
interpolation, backoff

Evaluation: perplexity

Tasks and Classification (use Bayes rule!)

Posterior decoding vs. noisy channel model

Evaluations: accuracy, precision, recall, and Fβ (F1) scores

Naïve Bayes (given the label, generate/explain each feature

independently) and connection to language modeling

Maximum Entropy Models

Meanings of feature functions and weights

Use for language modeling or conditional classification
(“posterior in one go”)

How to learn the weights: gradient descent

Distributed Representations
& Neural Language Models

What embeddings are
and what their motivation is

A common way to
evaluate: cosine similarity

Course Recap So Far
Basics of Probability

Requirements to be a distribution (“proportional to”, ∝)

Definitions of conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Basics of language modeling

Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)

Simple count-based model

Smoothing (and why we need it): Laplace (add-λ), interpolation, backoff

Evaluation: perplexity

Tasks and Classification (use Bayes rule!)

Posterior decoding vs. noisy channel model

Evaluations: accuracy, precision, recall, and Fβ (F1) scores

Naïve Bayes (given the label, generate/explain each feature independently) and connection to language

modeling

Maximum Entropy Models

Meanings of feature functions and weights

Use for language modeling or conditional classification (“posterior in one go”)

How to learn the weights: gradient descent

Distributed Representations & Neural Language Models

What embeddings are and what their motivation is

A common way to evaluate: cosine similarity

LATENT SEQUENCES AND
LATENT VARIABLE MODELS

Is Language Modeling “Latent?”

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Is Language Modeling “Latent?”
Most* of What We’ve Discussed: Not Really

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

these values are unknown but the generation process
(explanation) is transparent

*Neural language modeling as an exception

ATTACK
Three people have been
fatally shot, and five
people, including a mayor,
were seriously wounded
as a result of a Shining
Path attack today against a
community in Junin
department, central
Peruvian mountain region.

Is Document Classification “Latent?”

ATTACK
Three people have been
fatally shot, and five
people, including a mayor,
were seriously wounded
as a result of a Shining
Path attack today against a
community in Junin
department, central
Peruvian mountain region.

Is Document Classification “Latent?”
As We’ve Discussed

argmax𝑋 exp(𝜃 ⋅ 𝑓 𝑥, 𝑦)

ATTACK
Three people have been
fatally shot, and five
people, including a mayor,
were seriously wounded
as a result of a Shining
Path attack today against a
community in Junin
department, central
Peruvian mountain region.

Is Document Classification “Latent?”
As We’ve Discussed: Not Really

argmax𝑋 exp(𝜃 ⋅ 𝑓 𝑥, 𝑦)

these values are unknown

but the generation process
(explanation) is transparent

Ambiguity 
Part of Speech

Tagging

British Left Waffles on Falkland Islands

British Left Waffles on Falkland Islands

British Left Waffles on Falkland Islands

Adjective Noun Verb

Noun Verb Noun

orthography

morphology

Adapted from Jason Eisner, Noah Smith

lexemes

syntax

semantics

pragmatics

discourse

observed text

Adapted from Jason Eisner, Noah Smith

Latent Modeling

explain what you
see/annotate

with things “of
importance” you don’t

orthography

morphology

lexemes

syntax

semantics

pragmatics

discourse

observed text

Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

Adjective Noun Verb

Noun Verb Noun Prep Noun Noun

Prep Noun Noun(i):

(ii):

Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

Adjective Noun Verb

Noun Verb Noun Prep Noun Noun

Prep Noun Noun(i):

(ii):

Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

2. Produce a tag sequence for this sentence

Adjective Noun Verb

Noun Verb Noun Prep Noun Noun

Prep Noun Noun(i):

(ii):

Noisy Channel Model

Decode Rerank

𝑝 𝑋 𝑌) ∝ 𝑝 𝑌 𝑋) ∗ 𝑝(𝑋)

possible

(clean)
output

observed

(noisy) text

translation/

decode model

(clean) language

model

Latent Sequence Model: Machine Translation

Decode Rerank

𝑝 𝑋 𝑌) ∝ 𝑝 𝑌 𝑋) ∗ 𝑝(𝑋)

possible

(clean)
output

observed

(noisy) text

translation/
decode model

(clean) language

model

Latent Sequence Model: Machine Translation

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

How do you know what
words translate as?

Learn the translations!

Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

How do you know what
words translate as?

Learn the translations!

How?

Learn a “reverse” latent
alignment model
p(French words, alignments |

English words)

Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

How do you know what
words translate as?

Learn the translations!

How?

Learn a “reverse” latent
alignment model
p(French words, alignments |

English words)

Alignment?

Words can have different
meaning/senses

Latent Sequence Model: Machine Translation

The cat is on the chair.

Le chat est sur la chaise.

Eddie Izzard, “Dress to Kill” (MPAA: R)

https://www.youtube.com/watch?v=x1sQkEfAdfY

How do you know what
words translate as?

Learn the translations!

How?

Learn a “reverse” latent
alignment model
p(French words, alignments |

English words)

𝑝 English French) ∝
𝑝 French English) ∗ 𝑝(English)

Why Reverse?

Alignment?

Words can have different
meaning/senses

How to Learn With Latent Variables
(Sequences)

Expectation Maximization

Example: Unigram Language Modeling

Example: Unigram Language Modeling

maximize (log-)likelihood to learn the probability parameters

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

add complexity to better
explain what we see

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

add complexity to better
explain what we see

examples of latent classes z:
• part of speech tag
• topic (“sports” vs. “politics”)

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

add complexity to better
explain what we see

goal: maximize (log-)likelihood

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values

we just see the words w

add complexity to better
explain what we see

goal: maximize (log-)likelihood

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values
we just see the words w

add complexity to better
explain what we see

goal: maximize (log-)likelihood

if we did observe z, estimating the
probability parameters would be easy…

but we don’t! :(

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values
we just see the words w

add complexity to better
explain what we see

goal: maximize (log-)likelihood

if we knew the probability parameters
then we could estimate z and evaluate

likelihood… but we don’t! :(

if we did observe z, estimating the
probability parameters would be easy…

but we don’t! :(

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

w

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

w z1 & w z2 & w z3 & w z4 & w

Marginal(ized) Probability

w z1 & w z2 & w z3 & w z4 & w

𝑝 𝑤 = 𝑝 𝑧1 , 𝑤 + 𝑝 𝑧2 , 𝑤 + 𝑝 𝑧3 , 𝑤 + 𝑝(𝑧4 , 𝑤)

Marginal(ized) Probability

w z1 & w z2 & w z3 & w z4 & w

Marginal(ized) Probability

w z1 & w z2 & w z3 & w z4 & w

Marginal(ized) Probability

w z1 & w z2 & w z3 & w z4 & w

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

w z1 & w z2 & w z3 & w z4 & w

Example: Unigram Language Modeling
with Hidden Class

𝑝 𝑧1 , 𝑤1 , 𝑧2 , 𝑤2 , … , 𝑧𝑁 , 𝑤𝑁 = 𝑝 𝑧1 𝑝 𝑤1|𝑧1 ⋯𝑝 𝑧𝑁 𝑝 𝑤𝑁|𝑧𝑁

goal: maximize marginalized (log-)likelihood

w z1 & w z2 & w z3 & w z4 & w

if we did observe z, estimating the
probability parameters would be easy…

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate

likelihood… but we don’t! :(

http://blog.innotas.com/wp-content/uploads/2015/08/chicken-or-egg-cropped1.jpg

http://blog.innotas.com/wp-content/uploads/2015/08/chicken-or-egg-cropped1.jpg

if we did observe z, estimating the
probability parameters would be easy…

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate

likelihood… but we don’t! :(

http://blog.innotas.com/wp-content/uploads/2015/08/chicken-or-egg-cropped1.jpg

if we did observe z, estimating the
probability parameters would be easy…

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate

likelihood… but we don’t! :(

Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these
uncertain counts

Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these
parameters

2. M-step: maximize log-likelihood, assuming these
uncertain counts

count(𝑧𝑖 , 𝑤𝑖)𝑝(𝑧𝑖)

Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these
parameters

2. M-step: maximize log-likelihood, assuming these
uncertain counts

count(𝑧𝑖 , 𝑤𝑖)𝑝(𝑧𝑖)

We’ve already seen this type of counting, when
computing the gradient in maxent models.

Expectation Maximization (EM): M-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these
parameters

2. M-step: maximize log-likelihood, assuming these
uncertain counts

𝑝 𝑡+1 (𝑧)𝑝(𝑡)(𝑧)
estimated

counts

EM Math

EM Math

E-step: count under uncertainty

M-step: maximize log-likelihood

EM Math

E-step: count under uncertainty

M-step: maximize log-likelihood

old parameters

posterior distribution

EM Math

E-step: count under uncertainty

M-step: maximize log-likelihood

old parameters

new parameters
new parametersposterior distribution

Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

only observe these
(record heads vs. tails
outcome)

don’t observe this

Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

observed:
a, b, e, etc.
We run the code, vs.
The run failed

unobserved:
vowel or constonant?
part of speech?

Three Coins/Unigram With Class Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

𝑝 heads = 𝜆 𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾

𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾

𝑝 tails = 1 − 𝜓

Three Coins/Unigram With Class Example

Imagine three coins

𝑝 heads = 𝜆

𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓

Three parameters to estimate: λ, γ, and ψ

Three Coins/Unigram With Class Example

If all flips were observed

H H T H T H

H T H T T T

𝑝 heads = 𝜆

𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓

Three Coins/Unigram With Class Example

If all flips were observed

H H T H T H

H T H T T T

𝑝 heads = 𝜆

𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓

Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

marginal likelihood

rewrite joint using Bayes rule

Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

𝑝 H | heads = .8 𝑝 T | heads = .2

Three Coins/Unigram With Class Example

But not all flips are observed  set parameter values

H H T H T H

H T H T T T

𝑝 heads = 𝜆 = .6

𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6

𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

𝑝 H = 𝑝 H | heads ∗ 𝑝 heads + 𝑝 H | tails * 𝑝(tails)
= .8 ∗ .6 + .6 ∗ .4

𝑝 H | heads = .8 𝑝 T | heads = .2

Three Coins/Unigram With Class Example
H H T H T H

H T H T T T

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

Use posteriors to update parameters

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

(in general, p(heads | obs. H) and
p(heads| obs. T) do NOT sum to 1)

Three Coins/Unigram With Class Example
H H T H T H

H T H T T T

Use posteriors to update parameters

𝑝 heads =
heads from penny

total flips of penny
fully observed setting

our setting: partially-observed 𝑝 heads =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

total flips of penny

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

(in general, p(heads | obs. H) and
p(heads| obs. T) do NOT sum to 1)

Three Coins/Unigram With Class Example
H H T H T H

H T H T T T

Use posteriors to update parameters

our setting: partially-observed

𝑝(𝑡+1) heads =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

total flips of penny

=
𝔼𝑝(𝑡) [# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny]

total flips of penny

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

Three Coins/Unigram With Class Example
H H T H T H

H T H T T T

Use posteriors to update parameters

our setting:
partially-
observed

𝑝(𝑡+1) heads =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

total flips of penny

=
𝔼𝑝(𝑡)[# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny]

total flips of penny

=
2 ∗ 𝑝 heads | obs.H + 4 ∗ 𝑝 heads | obs.𝑇

6
≈ 0.444

𝑝 heads | obs.H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs.T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these
uncertain counts

Related to EM

Latent clustering

K-means:
https://www.csee.umbc.edu/courses/undergraduate/473/f17/kmeans/

Gaussian mixture modeling

