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Recap from last time
(and the first unit)...



N-gram Language Models

given some context...

l—l—\

p(Wi| wi_3,w;_p, w;_1) X count(W_s, w;_p, w;_1,W;)

compute beliefs about
what is likely...

predict the next word



Maxent Language Models

given some context...

l—‘—\

p(wil wi_3, wi_5,w;_1) = softmax (8 - f (Wi_3, Wi_p, w;_1,W;))

compute beliefs about
what is likely...

predict the next word



Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these matrix-vec
representations... Owi product

compute beliefs about
what s likely. LTI T TTTTT T MTT]

p(Wil wi_3,w;_p,w;_;)  softmax(6,, 'f:_:_(fwi—&Wi—Z» Wi1))

predict the next word




(Some) Properties of Embeddings

Capture “like” (similar) words

target:  Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint  capitulation
Redmond Washington  president Vaclav Havel — martial arts grafiti capitulated
Microsoft Velvet Revolution swordsmanship  taggers capitulating

Capture relationships

WOMAN ‘kina’) —
QUEENS vector(‘king’)
AUNT vector(‘man’) +

/ /7 vector(‘woman’) =
MAN vector(‘queen’)
UNCLE KINGS

QUEEN QUEEN vector(‘Paris’) -
vector(‘France’) +
/ vector(‘taly’) =

KING KING vector(‘Rome’)



Four kinds of vector models

Sparse vector representations

1. Mutual-information
weighted word co-
occurrence matrices

Dense vector representations:

Learn morein:
* Your project

* Paper (673)
* Other classes (478/678)

4. Brown clusters



Shared Intuition

Model the meaning of a word by “embedding” in a
vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many
computational linguistic applications by a vocabulary
index (“word number 545”) or the string itself



Intrinsic Evaluation: Cosine Similarity

Divide the dot product

by the length of the Are the vectors parallel?
two vectors -
27 -1: vectors point In
a- . . .
i opposite directions
a
This is the cosine of the +1: vectors point in
angle between them same directions
i-b = /b cosd 0: vectors are orthogonal
—».B
A cos 0

Sl

=y
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Basics of Probability

Requirements to be
a distribution
(“proportional to”, «)
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independence

Bayes rule,
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Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
Simple count-based model
Smoothing (and why we need it): Laplace (add-A), interpolation, backoff
Evaluation: perplexity

Tasks and Classification (use Bayes rule!)
Posterior decoding vs. noisy channel model
Evaluations: accuracy, precision, recall, and Fg (F;) scores

Naive Bayes (given the label, generate/explain each feature independently) and connection to language
modeling

Maximum Entropy Models
Meanings of feature functions and weights
Use for language modeling or conditional classification (“posterior in one go”)
How to learn the weights: gradient descent

Distributed Representations & Neural Language Models
What embeddings are and what their motivation is

A common way to evaluate: cosine similarity



LATENT SEQUENCES AND
LATENT VARIABLE MODELS



Is Language Modeling “Latent?”

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)



Is Language Modeling “Latent?”
Most™* of What We've Discussed: Not Really

p(Colorless green ideas sleep furiously) =
o(Colorless) *

o(green | Colorless) *

p(ideas | Colorless green) *
o(sleep | green ideas) *
o(furiously | ideas sleep)

these values are unknown but the generation process
(explanation) is transparent

*Neural language modeling as an exception



Is Document Classification “Latent?”

L LN B

.......
““““““

. Ya,

seriously woun%ed_
Shining
Path atta&k



Is Document Classification “Latent?”
As We’'ve Discussed

---------
.......
s "ap

fatallyshot, 0 e s ATTACK
rluingamaron=====__ """ A |
seriouslywounded. — — — _ 777 /,' PUSRpS ST Ny
Shining = | )
Path att%k_ S / . _ * — - R
Jantht = e = =0 7 // ‘s . e
&\\_’/ SHSENL =

argmaxy | [pri120 «p(0)
i

exp(6 - f(x,))
Z(x)

argmax y

p(x)

argmaxy exp(6 - f(x,y))



Is Document Classification “Latent?”
As We've Discussed: Not Really

fatallysﬁot, ................................. i . ATTACK
. Y ~~~~ a’,/' —— .
seriouslywounded. — — — _ 777 e et
—_y . .
Shining = ’ _ )
Path attagk =T & .. i
JL.JI’]-Ih ''''''' _ / \. _ . /.. -
& ~ S — ~ . \ _ _ ——

these values are unknown

argmax y HP(YL-IX) * p(X)
[

exp(0 - /(x,9))
Z(x)

argmax y p(x)

but the generation process
(explanation) is transparent

argmaxy exp(0 - f(x,y))



Ambiguity =2
Part of Speech
Tagging

British Left Waffles on Falkland Islands
British Left Waffles on Falkland Islands

Adjective  Noun Verb

British Left on Falkland Islands

Noun Verb Noun



observed text

orthography

morphology

lexemes

syntax

semantics

pragmatics

discourse

Adapted from Jason Eisner, Noah Smith



Adapted from Jason Eisner, Noah Smith

Latent Modeling

T

observed text

explain what you ‘orthography
see/annotate 7
" morphology
4/‘/‘/'
/;‘/./
lexemes
— nd
with things “of syntax

importance” you don’t

semantics

pragmatics

discourse



Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)



Latent Sequence Models: Part of Speech

(i):  Adjective Noun Verb Prep Noun Noun

(ii): Noun Verb Noun Prep Noun Noun

p(British Left Waffles on Falkland Islands)



Latent Sequence Models: Part of Speech

(i):  Adjective Noun Verb Prep Noun Noun

(ii): Noun Verb Noun Prep Noun Noun

p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)



Latent Sequence Models: Part of Speech

(i):  Adjective Noun Verb Prep Noun Noun

(ii): Noun Verb Noun Prep Noun Noun

p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

2. Producea tag sequence for this sentence



Noisy Channel Model

eeeeeeee



Latent Sequence Model: Machine Translation

~

sible

*

* *
* o

)

pOS
(clean) translation/ (clean) language
leen) \ decode model model

p(X|Y) xp(Y]X)*p(X)
7

observe d
(noisy) text



Latent Sequence Model: Machine Translation

Le chat est sur |la chaise.

& Eddie Izzard, “Dress to Kill” (MPAA: R)
S https://www.youtube.com/watch?v=x1sQkEfAdfY



Latent Sequence Model: Machine Translation

Le chat est sur |la chaise.
!

 / ‘L \L, ‘1'
The catis on the chair.

Eddie Izzard, “Dress to Kill” (MPAA: R)
B https://www.youtube.com/watch?v=x1sQkEfAdfY




Latent Sequence Model: Machine Translation

How do you know what
words translate as?

Learn the translations!

Le chat est sur la chaise.
!

. / ‘L \L, ‘1'
The catis on the chair.

Eddie Izzard, “Dress to Kill” (MPAA: R)
https://www.youtube.com/watch?v=x1sQkEfAdfY




Latent Sequence Model: Machine Translation

How do you know what
words translate as?

Learn the translations!

How? Le chat est sur la chaise.

Learn a “reverse” latent

alignment model

p(French words, alignments |
English words)

4 4

The catis on tHe chair.

Eddie Izzard, “Dress to Kill” (MPAA: R)
B https://www.youtube.com/watch?v=x1sQkEfAdfY




Latent Sequence Model: Machine Translation

How do you know what
words translate as?

Learn the translations!

How? Le chat est sur la chaise.

Learn a “reverse” latent R A b /q v om 7 v s
alignment model : [ i - pe T L P~ :
; E . o Z . ~ —
p(French words, alignments | . / G . B / e
English words) : / / // S
. / H
Alignment? b 4

Words can have different

meaning/senses The cat is on the chalr

Eddie Izzard, “Dress to Kill” (MPAA: R)
https://www.youtube.com/watch?v=x1sQkEfAdfY




Latent Sequence Model: Machine Translation

How do you know what
words translate as?

Learn the translations!

How? Le chat est sur la chaise.

Learn a “reverse” latent R A b /q v om 7 v s
alignment model : [ i - pe T L P~ :
; E . o Z . ~ —
p(French words, alignments | . / G . B / e
English words) : / / // S
. / H
Alignment? b 4

Words can have different

meaning/senses The cat is on the chalr

Why Reverse?

p(English | French) «
p(French | English) * p(English)

Eddie Izzard, “Dress to Kill” (MPAA: R)
https://www.youtube.com/watch?v=x1sQkEfAdfY




How to Learn With Latent Variables
(Sequences)

Expectation Maximization



Example: Unigram Language Modeling

P2, Way e W) = WP (W) (W) = | [ pwd)



Example: Unigram Language Modeling

POW1,Way e, wi) = WP (W) -+ p(w) = | [ pwp)

maximize (log-)likelihood to learn the probability parameters



Example: Unigram Language Modeling
with Hidden Class

pW1, Wy e wiy) = WP (w) -~ p(wy) = | [ pOw)

!

p(z1, Wy, 25, Wo, ..., Zy, Wy) = p(Z1))p(Wy|21) - p(Zy) p(WN | Zy)

= | [pontzo v



Example: Unigram Language Modeling
with Hidden Class

pW1, Wy e wiy) = WP (w) -~ p(wy) = | [ pOw)

!

p(21, Wy, 25, Wy, ..., Zy, Wy) = p(2)p(We|21) -+ p(zy) p(Wy |2y)
= [ [povitzopc
[
examples of latent classes z:

e part of speech tag
* topic (“sports” vs. “politics”)



Example: Unigram Language Modeling
with Hidden Class

p(wy, Wy, ...,wy) = p(w)p(wy) - p(wy) = p(w;)

l

p(z1,Wq, 25, Wy, .., Zy, Wy) = p(21)p(Wy|21) - p(Zy) p(WN | Zy)

= [ [povitzopc

goal: maximize (log-)likelihood
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= [ [povitzopc

goal: maximize (log-)likelihood

we don’t actually observe these z values

we just see the words w



Example: Unigram Language Modeling
with Hidden Class

p(wy, Wy, ...,wy) = p(w)p(wy) - p(wy) = p(w;)

l

p(z1,Wq, 25, Wy, .., Zy, Wy) = p(21)p(Wy|21) - p(Zy) p(WN | Zy)

= [ [povitzopc

goal: maximize (log-)likelihood

we don’t actually observe these z values
we just see the words w

if we did observe z, estimating the
probability parameters would be easy...
but we don’t! :(



Example: Unigram Language Modeling
with Hidden Class

p(wy, Wy, ...,wy) = p(w)p(wy) - p(wy) = p(w;)

l

p(z1,Wq, 25, Wy, .., Zy, Wy) = p(21)p(Wy|21) - p(Zy) p(WN | Zy)

= [ [povitzopc

goal: maximize (log-)likelihood

we don’t actually observe these z values
we just see the words w

if we did observe z, estimating the if we knew the probability parameters
probability parameters would be easy... then we could estimate z and evaluate
but we don’t! :( likelihood... but we don’t! :(



Example: Unigram Language Modeling
with Hidden Class

p(z1, Wy, 2o, Wy, oo, Zy, Wy ) = D(21)p(W1|21) - p(Zn) p(WN | Z))

= | [ponizd v

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood



Example: Unigram Language Modeling
with Hidden Class

p(z1, Wy, 2o, Wy, oo, Zy, Wy ) = D(21)p(W1|21) - p(Zn) p(WN | Z))

= | [ponizd v

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood




Example: Unigram Language Modeling
with Hidden Class

p(z1, Wy, 2o, Wy, oo, Zy, Wy ) = D(21)p(W1|21) - p(Zn) p(WN | Z))

= | [ponizd v

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

=L

w Z; &w

| |

Z,&w

;& w

Z; & w



Marginal(ized) Probability

=Ll

w Z; & w Z,&w Z; & w Z;, &w

p(w) =p(z,w) +p(z3,w) +p(z3,w) + p(z4, W)



Marginal(ized) Probability

=Ll

w Z; & w Z,&w Z; & w Z;, &w

p(W) = p(20,W) + P (22, W) + (23, W) +P(za, W) = ) p(zi,W)

z=1



Marginal(ized) Probability

=Ll

Z,&w Z; & w Z;, &w

p(w) = EP(Z» w)



Marginal(ized) Probability

=Ll

Z,&w Z; & w Z;, &w

p(w) = Ep(z, w)

= p@pw 2



Example: Unigram Language Modeling
with Hidden Class

p(Z1, Wy, 23, Wy, ..., Zy, Wy) = p(21)p(Wy|21) - p(Zy) p(WN | ZN)

= | [ponitzo vz

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

ad NI 1IN

w zZ;&w  z,&w  z3&Ww Z, & w

PW1, W, ., W) = (Z p(zl,vv)) (Z p<z2,w>> (Z p(zN,w>>




Example: Unigram Language Modeling
with Hidden Class

p(z1, Wy, Zo, Wy, o, Zy, Wy ) = D(21)p(W1121) - p(Zn) p(WN | Z))

goal: maximize marginalized (log-)likelihood

=1

w Z; &w Z,&wW ;& w Z, &w
p(Wy, Wy, ..., Wy) = ZP(Zl,W) zp(zz»W) ZP(ZN»W)
Zq Zy ZN
if we did observe z, estimating the if we knew the probability parameters
probability parameters would be easy... then we could estimate z and evaluate

but we don’t! :( likelihood... but we don’t! :(



http://blog.innotas.com/wp-content/uploads/2015/08/chicken-or-egg-croppedl.jpg



if we knew the probability parameter:
then we could estimate z and evaluat:
likelihood... but we don’t! :(

if we did observe z, estimating the
probability parameters would be easy...
but we don’t! :(

http://blog.innotas.com/wp-content/uploads/2015/08/chicken-or-egg-croppedl.jpg



probability p¥
but

http://blog.innotas.com/wp-content/uploads/2015/¢



Expectation Maximization (EM)

0. Assume some value for your parameters
Two step, iterative algorithm
1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these
uncertain counts



Expectation Maximization (EM): E-step

0. Assume some value for your parameters
Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these
parameters

p(z;) |:| |:| count(z;, w;) I
o1 [ —— ][

2. M-step: maximize log-likelihood, assuming these
uncertain counts




Expectation Maximization (EM): E-step

0. Assume some value for your parameters
Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these
parameters

p(z;) I I count(z;, w;) I
o1 [ —— ][

PR \\We've already seen this type of counting, when
aeel  computing the gradient in maxent models.




Expectation Maximization (EM): M-step

0. Assume some value for your parameters
Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these
parameters

2. M-step: maximize log-likelihood, assuming these
uncertain counts

@ gl g @

estimated
counts




EM Math

MAX Lz ~p 6y CIw) llog pg (z, w)]



EM Math

E-step: count under uncertainty

max E, . ot C1w) llog pg(z, W)]

M-step: maximize log-likelihood



EM Math

E-step: count under uncertainty

max E,-» . cwllogpe(z w)]

M-step: maximize log-likelihood



EM Math

E-step: count under uncertainty

old parameters

mHaX [, - ~ D) (Cw) [lOg Po (Z’ W)]

new parameters posterior distribution

new parameters

M-step: maximize log-likelihood



Three Coins/Unigram With Class Example

Imagine three coins

Flip 15t coin (penny)

If heads: flip 2"9 coin (dollar coin)

If tails: flip 37 coin (dime)



Three Coins/Unigram With Class Example

Imagine three coins

If heads: flip 229 coin (dollar coin)

only observe these
(record heads vs. tails
outcome)

If tails: flip 37 coin (dime)



Three Coins/Unigram With Class Example

Imagine three coins

. st . unobserved:
Flip 15t coin (penny) < weeeerveiiiiiil Lomel or constonant?
part of speech?
If heads: flip 229 coin (dollar coin)
observed:
a, b, e, etc.

We run the code, vs.
The run failed

If tails: flip 37 coin (dime)



Three Coins/Unigram With Class Example

Imagine three coins

Flip 15t coin (penny)

p(heads) = A p(tails) =1 -2

If heads: flip 2"9 coin (dollar coin)
p(heads) =y p(tails) =1 -y

If tails: flip 37 coin (dime)
p(heads) =y p(tails) =1 -1



Three Coins/Unigram With Class Example

Imagine three coins

p(heads) = A p(heads) =y p(heads) =y
p(tails) =1—-21  p(tails) =1 -y p(tails) =1 -1y

Three parameters to estimate: A, y, and ¢



Three Coins/Unigram With Class Example

HHTHTH
HT T T

If all flips were observed

p(heads) = 2 p(heads) =y p( ) =1y
p(tails) =1—-21  p(tails) =1 -y p(tails) =1 -9y



Three Coins/Unigram With Class Example

HHTHTH
HT T T

If all flips were observed

p(heads) = 2 p(heads) =y p( ) =1y
p(tails) =1—-21  p(tails) =1 -y p(tails) =1 -9y

p(heads) = p(heads) =

p(tails) =

4
6
2
c p(tails) =

Bl W B
e
~
—
|l



Three Coins/Unigram With Class Example

H-H-T-H-T-H
HT T T

But not all flips are observed = set parameter values

p(heads) =1 = .6 p(heads) = .8

p( ) =.6
p(tails) = .4

p(tails) = .2 p(tails) = 4



Three Coins/Unigram With Class Example

H-H-T-H-T-H
HT T T

But not all flips are observed = set parameter values

p(heads) =1 = .6 p(heads) = .8

p( ) =.6
p(tails) = .4

p(tails) = .2 p(tails) = 4

Use these values to compute posteriors

(heads | ob d item H) p(heads & H)
p(heads | observed item H) =
p(H)
(heads | ob d item T) p(heads & T)
p(heads | observed item T) =
p(T)




Three Coins/Unigram With Class Example

H-H-T-H-T-H
HT T T

But not all flips are observed = set parameter values

p(heads) =1 = .6 p(heads) = .8

p( ) =.6
p(tails) = .4

p(tails) = .2 p(tails) = 4

Use these values to compute posteriors

rewrite joint using Bayes rule

H | heads)n(heads
p(heads | observed item H) = p(H | p(H))p( )

marginal likelihood




Three Coins/Unigram With Class Example
H-H-T-H-TH
HT T T
But not all flips are observed = set parameter values
p(heads) =1 = .6 p(heads) = .8 p( ) =.6
p(tails) = .4 p(tails) = .2 p(tails) = .4
Use these values to compute posteriors

p(H | heads)p(heads)
p(H)

p(heads | observed item H) =

p(H | heads) = .8 p(T | heads) = .2



Three Coins/Unigram With Class Example
H-H-T-H-TH
HT T T
But not all flips are observed = set parameter values
p(heads) =1 = .6 p(heads) = .8 p( ) =.6
p(tails) = .4 p(tails) = .2 p(tails) = .4
Use these values to compute posteriors

p(H | heads)p(heads)
p(H)

p(heads | observed item H) =

p(H | heads) = .8 p(T | heads) = .2

p(H) = p(H | heads) * p(heads) + p(H | tails) *p(tails)
=.8*x.6+.6*.4



Three Coins/Unigram With Class Example
H-H- T -H-TH
HT T T

Use posteriors to update parameters

p(H| heads)p(heads) p(T| heads)p(heads)
heads | obs.H) = p(heads | obs.T) =
plheads | obs: p(H) p(D)
8 x*.6 _ 2 *.6 0.334
~ B 6t 6.4 00 T 2%x.6+.6%4

(in general, p(heads | obs. H) and
p(heads [ obs. T) do NOT sum to 1)



Three Coins/Unigram With Class Example
H-H- T -H-TH
HT T T

Use posteriors to update parameters

p(H| heads)p(heads) p(T| heads)p(heads)
heads | obs.H) = p(heads | obs.T) =
plheads | obs: p(H) p(D)
8 x*.6 _ 2 *.6 0.334
~ B 6t 6.4 00 T 2%x.6+.6%4

(in general, p(heads | obs. H) and
p(heads [ obs. T) do NOT sum to 1)

# heads from penny

fully observed setting p(heads) # total flips of penny

# expected heads from penny

our setting: partially-observed p(heads) = # total flips of penny



Three Coins/Unigram With Class Example
H-H- T -H-TH
HT T T

Use posteriors to update parameters

T| heads)p(heads
p(heads | obs.H) = p(H] heads)p(heads) p(heads | obs.T) = p(T] )P( )
p(H) p(T)
8 *.6 _ 2 *.6 0.334
_8*6+6*A~06W’ T 2x6+.6x4
# exvected heads from penn
ptt(heads) = P perny

# total flips of penny
our setting: partially-observed E ) [# expected heads from penny]

# total flips of penny



Three Coins/Unigram With Class Example
H-H- T -H-TH
HT T T
Use posteriors to update parameters

p(H| heads)p(heads) p(T| heads)p(heads)
heads | obs.H) = p(heads | obs.T) =
p( | ) () p(T)
8% .6 _ 2 *.6 0.334
~ B oto6ra 007 T 2%x6+.6%.4
# expected heads from penn
p(t+D (heads) = P . penny
- # total flips of penny
our setting: E () [# expected heads from penny]
partially- = .
observed # total flips of penny

2 p(heads | obs.H) + 4 * p(heads | obs.T)

6
~ 0.444




Expectation Maximization (EM)

0. Assume some value for your parameters
Two step, iterative algorithm:
1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these
uncertain counts



Related to EM

Latent clustering

K-means:
https://www.csee.umbc.edu/courses/undergraduate/473/f17/kmeans/

Gaussian mixture modeling



