Introduction to Latent Sequences \& Expectation Maximization

CMSC 473/673

UMBC
October 2nd, 2017

Recap from last time (and the first unit)...

N-gram Language Models

given some context...
compute beliefs about what is likely...

Maxent Language Models

given some context...
compute beliefs about what is likely...

Neural Language Models

given some context...
create/use
"distributed representations"...
combine these
representations...

(Some) Properties of Embeddings

Capture "like" (similar) words

target:	Redmond	Havel	ninjutsu	graffiti	capitulate
	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Capture relationships

MAN

$$
\begin{gathered}
\text { vector('king') - } \\
\text { vector('man') }+ \\
\text { vector('woman')' } \approx \\
\text { vector('queen') } \\
\text { vector('Paris') - } \\
\text { vector('France') }+ \\
\text { vector('Italy') } \approx \\
\text { vector('Rome') }
\end{gathered}
$$

Four kinds of vector models

Sparse vector representations

1. Mutual-information weighted word cooccurrence matrices

Dense vector representations:
2. Singular value decomposition/Latent Learn more in: Semantic Analysis
3. Neural-network-inspired models (skip-grams, CBOW)

- Your project
- Paper (673)
- Other classes (478/678)

4. Brown clusters

Shared Intuition

Model the meaning of a word by "embedding" in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic applications by a vocabulary index ("word number 545") or the string itself

Intrinsic Evaluation: Cosine Similarity

Divide the dot product by the length of the two vectors

$$
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \vec{b} \mid}
$$

Are the vectors parallel?
-1: vectors point in opposite directions
+1: vectors point in same directions

0 : vectors are orthogonal

Course Recap So Far

Basics of Probability

Requirements to be
a distribution
("proportional to", \propto)
Definitions of
conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Course Recap So Far

Basics of Probability

Requirements to be a
distribution ("proportional to", \propto)
Definitions of conditional
probability, joint probability, and independence

Bayes rule, (probability)
chain rule

Basics of language modeling
Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)

Simple count-based model

Smoothing (and why we need it): Laplace (add- λ), interpolation, backoff

Evaluation: perplexity

Course Recap So Far

Basics of Probability
Requirements to be a distribution
("proportional to", \propto)
Definitions of conditional
probability, joint probability, and
independence
Bayes rule, (probability) chain rule
Basics of language modeling
Goal: model (be able to predict) and
give a score to language (whole sequences of
characters or words)
Simple count-based model
Smoothing (and why we need it):
Laplace (add- λ), interpolation, backoff
Evaluation: perplexity

Tasks and Classification (use Bayes rule!)

Posterior decoding vs. noisy channel model

Evaluations: accuracy, precision, recall, and $F_{\beta}\left(F_{1}\right)$ scores

Naïve Bayes (given the label, generate/explain each feature independently) and connection to language modeling

Course Recap So Far

```
Basics of Probability
    Requirements to be a distribution
("proportional to", \propto)
    Definitions of conditional probability, joint
probability, and independence
    Bayes rule, (probability) chain rule
Basics of language modeling
    Goal: model (be able to predict) and give a
score to language (whole sequences of characters or
words)
    Simple count-based model
    Smoothing (and why we need it): Laplace
(add-\lambda), interpolation, backoff
    Evaluation: perplexity
Tasks and Classification (use Bayes rule!)
    Posterior decoding vs. noisy channel model
    Evaluations: accuracy, precision, recall, and
F
    Naïve Bayes (given the label,
generate/explain each feature independently) and
connection to language modeling
```


Maximum Entropy Models

Meanings of feature functions and weights

Use for language modeling or conditional classification ("posterior in one go")

How to learn the
weights: gradient descent

Course Recap So Far

Basics of Probability
Requirements to be a distribution ("proportional to", \propto) Definitions of conditional probability, joint probability, and independence
Bayes rule, (probability) chain rule
Basics of language modeling
Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
Simple count-based model
Smoothing (and why we need it): Laplace (add $-\lambda$),
interpolation, backoff
Evaluation: perplexity
Tasks and Classification (use Bayes rule!)
Posterior decoding vs. noisy channel model
Evaluations: accuracy, precision, recall, and $F_{\beta}\left(F_{1}\right)$ scores
Naïve Bayes (given the label, generate/explain each feature independently) and connection to language modeling
Maximum Entropy Models
Meanings of feature functions and weights
Use for language modeling or conditional classification
("posterior in one go")
How to learn the weights: gradient descent

Distributed Representations \& Neural Language Models
What embeddings are and what their motivation is
A common way to evaluate: cosine similarity

Course Recap So Far

```
Basics of Probability
    Requirements to be a distribution ("proportional to", \propto)
    Definitions of conditional probability, joint probability, and independence
    Bayes rule, (probability) chain rule
Basics of language modeling
    Goal: model (be able to predict) and give a score to language (whole sequences of characters or words)
    Simple count-based model
    Smoothing (and why we need it): Laplace (add-\lambda), interpolation, backoff
    Evaluation: perplexity
Tasks and Classification (use Bayes rule!)
    Posterior decoding vs. noisy channel model
    Evaluations: accuracy, precision, recall, and F F ( }\mp@subsup{F}{1}{})\mathrm{ scores
    Naïve Bayes (given the label, generate/explain each feature independently) and connection to language
modeling
Maximum Entropy Models
    Meanings of feature functions and weights
    Use for language modeling or conditional classification ("posterior in one go")
    How to learn the weights: gradient descent
Distributed Representations & Neural Language Models
    What embeddings are and what their motivation is
    A common way to evaluate: cosine similarity
```


LATENT SEQUENCES AND LATENT VARIABLE MODELS

Is Language Modeling "Latent?"

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)

Is Language Modeling "Latent?" Most* of What We've Discussed: Not Really

Is Document Classification "Latent?"

Is Document Classification "Latent?" As We've Discussed

$$
\begin{gathered}
\operatorname{argmax}_{X} \prod_{i} p\left(Y_{i} \mid X\right) * p(X) \\
\operatorname{argmax}_{X} \frac{\exp (\theta \cdot f(x, y))}{Z(x)} * p(x) \\
\operatorname{argmax}_{X} \exp (\theta \cdot f(x, y))
\end{gathered}
$$

Is Document Classification "Latent?" As We’ve Discussed: Not Really

these values are unknown
but the generation process (explanation) is transparent

$$
\begin{gathered}
\operatorname{argmax}_{X} \prod_{i} p\left(Y_{i} \mid X\right) * p(X) \\
\operatorname{argmax}_{X} \frac{\exp (\theta \cdot f(x, y))}{Z(x)} * p(x)
\end{gathered}
$$

Ambiguity \rightarrow Part of Speech Tagging

British Left Waffles on Falkland Islands British Left Waffles on Falkland Islands

 Adjective Noun VerbBritish Left Waffles on Falkland Islands Noun Verb Noun

Latent Modeling

Latent Sequence Models: Part of Speech

p(British Left Waffles on Falkland Islands)

Latent Sequence Models: Part of Speech

(i): Adjective
(ii): Noun Verb Noun Prep
p(British Left Waffles on Falkland Islands)

Latent Sequence Models: Part of Speech

(i): Adjective Noun Verb Prep Noun Noun
 (ii): Noun Verb Noun Prep Noun Noun
 p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)

Latent Sequence Models: Part of Speech

(i): Adjective
 Noun
 Verb
 Prep
 Noun
 Noun
 (ii): Noun Verb Noun Prep Noun
 p(British Left Waffles on Falkland Islands)

1. Explain this sentence as a sequence of (likely?) latent (unseen) tags (labels)
2. Produce a tag sequence for this sentence

Noisy Channel Model

Latent Sequence Model: Machine Translation

Latent Sequence Model: Machine Translation

Le chat est sur la chaise.

Latent Sequence Model: Machine Translation

Le chat est sur la chaise.

The cat is on the chair.

Latent Sequence Model: Machine Translation

How do you know what
words translate as?
Learn the translations!

Le chat est sur la chaise.

 11

 The cat is on the chair.

Latent Sequence Model: Machine Translation

How do you know what

words translate as?
Learn the translations!

How?
Learn a "reverse" latent alignment model
p(French words, alignments |
English words)

Le chat est sur la chaise.

The cat is on the chair.

Latent Sequence Model: Machine Translation

How do you know what

words translate as?
Learn the translations!

How?
Learn a "reverse" latent alignment model
p(French words, alignments |
English words)

Alignment?

Words can have different meaning/senses

Le chat est sur la chaise.

The cat is on the chair.

Latent Sequence Model: Machine Translation

How do you know what

words translate as?
Learn the translations!

How?
Learn a "reverse" latent alignment model
p(French words, alignments |
English words)

Alignment?

Words can have different meaning/senses

Le chat est sur la chaise.

The cat is on the chair.

```
Why Reverse?
    p(English | French) }
p(French | English) * p(English)
```


How to Learn With Latent Variables
 (Sequences)

Expectation Maximization

Example: Unigram Language Modeling

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

Example: Unigram Language Modeling

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-)likelihood to learn the probability parameters

Example: Unigram Language Modeling with Hidden Class

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

add complexity to better

explain what we see

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

Example: Unigram Language Modeling with Hidden Class

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

add complexity to better

explain what we see

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

examples of latent classes z :

- part of speech tag
- topic ("sports" vs. "politics")

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right) \\
\begin{array}{c}
\text { add complexity to better } \\
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
= \\
\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
\text { goal: maximize (log-)likelihood what we see }
\end{array}
\end{gathered}
$$

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right) \\
\text { | add complexity to better } \\
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
\text { goal: maximize (log-)likelihood }
\end{gathered}
$$

we don't actually observe these z values

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right) \\
\quad \begin{array}{r}
\text { add complexity to better } \\
\text { explain what we see }
\end{array} \\
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
\text { goal: maximize (log-)likelihood } \\
\text { we don't actually observe these z values } \\
\text { we just see the words w }
\end{gathered}
$$

if we did observe z, estimating the probability parameters would be easy... but we don't! :(

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right) \\
\quad \begin{array}{r}
\text { add complexity to better } \\
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
\text { goal: maximize (log-)likelihood what we see } \\
\text { we don't actually observe these } z \text { values } \\
\text { we just see the words } w
\end{array}
\end{gathered}
$$

if we did observe z, estimating the probability parameters would be easy... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

Marginal(ized) Probability

$$
p(w)=p\left(z_{1}, w\right)+p\left(z_{2}, w\right)+p\left(z_{3}, w\right)+p\left(z_{4}, w\right)
$$

Marginal(ized) Probability

$$
p(w)=p\left(z_{1}, w\right)+p\left(z_{2}, w\right)+p\left(z_{3}, w\right)+p\left(z_{4}, w\right)=\sum_{z=1}^{4} p\left(z_{i}, w\right)
$$

Marginal(ized) Probability

$$
p(w)=\sum_{z} p(z, w)
$$

Marginal(ized) Probability

$$
\begin{aligned}
p(w) & =\sum_{z} p(z, w) \\
& =\sum_{z} p(z) p(w \mid z)
\end{aligned}
$$

Example: Unigram Language Modeling with Hidden Class

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

w

$z_{1} \& w$

$z_{2} \& w$

$z_{3} \& w$

$z_{4} \& w$
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=\left(\sum_{z_{1}} p\left(z_{1}, w\right)\right)\left(\sum_{z_{2}} p\left(z_{2}, w\right)\right) \cdots\left(\sum_{z_{N}} p\left(z_{N}, w\right)\right)$

Example: Unigram Language Modeling with Hidden Class

$p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right)$
goal: maximize marginalized (log-)likelihood

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=\left(\sum_{z_{1}} p\left(z_{1}, w\right)\right)\left(\sum_{z_{2}} p\left(z_{2}, w\right)\right) \cdots\left(\sum_{z_{N}} p\left(z_{N}, w\right)\right)
$$

if we did observe z, estimating the probability parameters would be easy... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(

if we knew the probability parameter then we could estimate z and evaluat likelihood... but we don't! :(

Expectation Maximization (EM)

0 . Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)
2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M- We've already seen this type of counting, when se uncer computing the gradient in maxent models.

Expectation Maximization (EM): M-step

0 . Assume some value for your parameters
Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters
2. M-step: maximize log-likelihood, assuming these uncertain counts

EM Math

$\max _{\theta} \mathbb{E}_{z \sim p_{\theta}(t)(\cdot \mid w)}\left[\log p_{\theta}(z, w)\right]$

EM Math

E-step: count under uncertainty
$\max _{\theta} \mathbb{E}_{z \sim p_{\theta}(t)}(\cdot \mid w)\left[\log p_{\theta}(z, w)\right]$

M-step: maximize log-likelihood

EM Math

E-step: count under uncertainty

$\max _{\theta} \mathbb{E}_{Z \sim p_{\theta}}^{\sim}(t)(\cdot \mid w)\left[\log p_{\theta}(z, w)\right]$
 posterior distribution

M-step: maximize log-likelihood

EM Math

E-step: count under uncertainty

 new parameters
 posterior distribution

M-step: maximize log-likelihood

Three Coins/Unigram With Class Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny)

If heads: flip $2^{\text {nd }}$ coin (dollar coin)

If tails: flip $3^{\text {rd }}$ coin (dime)

Three Coins/Unigram With Class Example

Imagine three coins

If heads: flip $2^{\text {nd }}$ coin (dollar coin)
only observe these
(record heads vs. tails
If tails: flip $3^{\text {rd }}$ coin (dime)

Three Coins/Unigram With Class Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny)

unobserved:
vowel or constonant? part of speech?

If heads: flip $2^{\text {nd }}$ coin (dollar coin)

If tails: flip $3^{\text {rd }}$ coin (dime)
observed:
a, b, e, etc.
We run the code, vs. The run failed

Three Coins/Unigram With Class Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny)

$$
p(\text { heads })=\lambda
$$

$$
p(\text { tails })=1-\lambda
$$

If heads: flip $2^{\text {nd }}$ coin (dollar coin)

$$
p(\text { heads })=\gamma \quad p(\text { tails })=1-\gamma
$$

If tails: flip $3^{\text {rd }}$ coin (dime)

$$
p(\text { heads })=\psi \quad p \text { (tails) }=1-\psi
$$

Three Coins/Unigram With Class Example

Imagine three coins

$$
\begin{gathered}
p(\text { heads })=\lambda \\
p(\text { tails })=1-\lambda
\end{gathered}
$$

p (heads) $=\gamma$
p (tails) $=1-\gamma$

$$
\begin{gathered}
p(\text { heads })=\psi \\
p(\text { tails })=1-\psi
\end{gathered}
$$

Three parameters to estimate: λ, γ, and ψ

Three Coins/Unigram With Class Example

H H T H T H
 H T H T T T

If all flips were observed

$$
\begin{array}{ccc}
p(\text { heads })=\lambda & p \text { (heads })=\gamma & p(\text { heads })=\psi \\
p(\text { tails })=1-\lambda & p \text { (tails })=1-\gamma & p(\text { tails })=1-\psi
\end{array}
$$

Three Coins/Unigram With Class Example

H H T H T H
 H T H T T T

If all flips were observed

$$
\begin{array}{ccc}
p(\text { heads })=\lambda & p \text { (heads) }=\gamma & p \text { (heads) }=\psi \\
p \text { (tails })=1-\lambda & p \text { (tails) }=1-\gamma & p \text { (tails) }=1-\psi \\
p \text { (heads) }=\frac{4}{6} & p \text { (heads) }=\frac{1}{4} & p \text { (heads) }=\frac{1}{2} \\
p \text { (tails })=\frac{2}{6} & p \text { (tails }=\frac{3}{4} & p \text { (tails) }=\frac{1}{2}
\end{array}
$$

Three Coins/Unigram With Class Example

But not all flips are observed \rightarrow set parameter values

$$
\left.\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p(\text { heads }) & =.8 \\
p(\text { tails }) & =.4 & p(\text { tails }) & =.2
\end{array} r(\text { heads })=.6 \text { tails }\right)=.4 \text { l }
$$

Three Coins/Unigram With Class Example

But not all flips are observed \rightarrow set parameter values

$$
\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p \text { (heads }) & =.8 \\
p(\text { tails }) & =.4 & p(\text { tails }) & =.2
\end{array}
$$

Use these values to compute posteriors
$p($ heads \mid observed item H$)=\frac{p(\text { heads \& } \mathrm{H})}{p(\mathrm{H})}$
$p($ heads \mid observed item $T)=\frac{p(\text { heads \& })}{p(\mathrm{~T})}$

Three Coins/Unigram With Class Example

But not all flips are observed \rightarrow set parameter values

$$
\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p \text { (heads }) & =.8 \\
p(\text { tails }) & =.4 & p(\text { tails }) & =.2
\end{array}
$$

Use these values to compute posteriors
rewrite joint using Bayes rule
$p($ heads \mid observed item H$)=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})}$

Three Coins/Unigram With Class Example

H	H	T	H	T	H
H	T	H	T	T	T

But not all flips are observed \rightarrow set parameter values

$$
\begin{aligned}
p(\text { heads }) & =\lambda=.6 & p \text { (heads }) & =.8 \\
p(\text { tails }) & =.4 & p \text { (tails }) & =.2
\end{aligned}
$$

Use these values to compute posteriors
$p($ heads \mid observed item H$)=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})}$
$p(\mathrm{H} \mid$ heads $)=.8$
$p(\mathrm{~T} \mid$ heads $)=.2$

Three Coins/Unigram With Class Example

H	H	T	H	T	H
H	T	H	T	T	T

But not all flips are observed \rightarrow set parameter values

$$
\begin{aligned}
p(\text { heads }) & =\lambda=.6 & p \text { (heads }) & =.8 \\
p(\text { tails }) & =.4 & p \text { (tails }) & =.2
\end{aligned}
$$

Use these values to compute posteriors

$$
\begin{gathered}
p(\text { heads } \mid \text { observed item } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
p(\mathrm{H} \mid \text { heads })=.8 \quad p(\mathrm{~T} \mid \text { heads })=.2 \\
p(\mathrm{H})=p(\mathrm{H} \mid \text { heads }) * p(\text { heads })+p(\mathrm{H} \mid \text { tails }) * p(\text { tails }) \\
=.8 * .6+.6 * .4
\end{gathered}
$$

Three Coins/Unigram With Class Example

Use posteriors to update parameters

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
\quad=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667
\end{gathered}
$$

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p(\text { heads })}{p(\mathrm{~T})} \\
\quad=\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{gathered}
$$

(in general, p (heads | obs. H) and p(heads | obs. T) do NOT sum to 1)

Three Coins/Unigram With Class Example

Use posteriors to update parameters

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667
\end{gathered}
$$

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p(\text { heads })}{p(\mathrm{~T})} \\
\quad=\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{gathered}
$$

(in general, p (heads | obs. H) and p(heads| obs. T) do NOT sum to 1)
fully observed setting

$$
p(\text { heads })=\frac{\# \text { heads from penny }}{\# \text { total flips of penny }}
$$

our setting: partially-observed

$$
p(\text { heads })=\frac{\# \text { expected heads from penny }}{\# \text { total flips of penny }}
$$

Three Coins/Unigram With Class Example

Use posteriors to update parameters

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
\quad=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667
\end{gathered}
$$

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p(\text { heads })}{p(\mathrm{~T})} \\
\quad=\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{gathered}
$$

our setting: partially-observed

$$
\begin{aligned}
& p^{(t+1)}(\text { heads })=\frac{\# \text { expected heads from penny }}{\# \text { total flips of penny }} \\
& \quad=\frac{\mathbb{E}_{p^{(t)}}[\# \text { expected heads from penny }]}{\# \text { total flips of penny }}
\end{aligned}
$$

Three Coins/Unigram With Class Example

H	H	T	H	T	H
H	T	H	T	T	T

Use posteriors to update parameters

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
\quad=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667
\end{gathered}
$$

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p(\text { heads })}{p(\mathrm{~T})} \\
\quad=\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{gathered}
$$

our setting:
partiallyobserved

$$
\begin{gathered}
p^{(t+1)}(\text { heads })=\frac{\# \text { expected heads from penny }}{\# \text { total flips of penny }} \\
=\frac{\mathbb{E}_{p^{(t)}}[\# \text { expected heads from penny }]}{\# \text { total flips of penny }} \\
=\frac{2 * p(\text { heads } \mid \text { obs. } \mathrm{H})+4 * p \text { (heads } \mid \text { obs. } T)}{6} \\
\approx 0.444
\end{gathered}
$$

Expectation Maximization (EM)

0 . Assume some value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)
2. M-step: maximize log-likelihood, assuming these uncertain counts

Related to EM

Latent clustering

K-means:
https://www.csee.umbc.edu/courses/undergraduate/473/f17/kmeans/

Gaussian mixture modeling

