Course Recap

CMSC 473/673 Frank Ferraro

Course Goals

- Be introduced to some of the core problems and solutions of NLP (big picture)
- Learn different ways that success and progress can be measured in NLP
- Relate to statistics, machine learning, and linguistics
- Implement NLP programs
- Read and analyze research papers
- Practice your (written) communication skills

NLP ⇔ Machine Learning

Goal: Learn parameters (weights) θ to develop a scoring function that says how "good" some provided text is

S = p_θ finclud the Ch Nation cham h: The based

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

Goal: Learn parameters (weights) θ to develop a scoring function that says how "good" some provided text is

Text Annotation Tasks

- 1. Classify the entire document
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation

Course Recap

Requirements to be a distribution ("proportional to", \propto)

Definitions of conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Tasks and Classification (use Bayes rule!)

Posterior decoding vs. Bayes decomposition model

Evaluations: accuracy, precision, recall, and F_β (F_1) scores

Basics of ML

Course Recap

Requirements to be a distribution ("proportional to",

∝)

Definitions of conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Tasks and Classification (use Bayes rule!)

Posterior decoding vs. Bayes decomposition model

Evaluations: accuracy, precision, recall, and $F_{\beta}\left(F_{1}\right)$ scores

Basics of language modeling

Goal: model (be able to predict) and give a score to *language* (whole sequences of characters or words)

Simple count-based model

Smoothing (and why we need it): Laplace (add- λ) Evaluation: perplexity

Course Recap

- Requirements to be a distribution ("proportional to", \propto)
- Definitions of conditional probability, joint probability, and independence
 - Bayes rule, (probability) chain rule
- Tasks and Classification (use Bayes rule!)
- Posterior decoding vs. Bayes decomposition model Evaluations: accuracy, precision, recall, and F_{β} (F_1) scores
- Basics of language modeling
- Goal: model (be able to predict) and give a score to *language* (whole sequences of characters or words) Simple count-based model
- Smoothing (and why we need it): Laplace (add- λ)
- Evaluation: perplexity

Maximum Entropy Models

- Meanings of feature functions and weights Use for language modeling or conditional classification ("posterior in one go")
- How to learn the weights: gradient descent
- Distributed Representations & Neural Language Models What embeddings are and what their motivation is A common way to evaluate: cosine similarity

- Requirements to be a distribution ("proportional to", \propto)
- Definitions of conditional probability, joint probability, and independence
 - Bayes rule, (probability) chain rule
- Tasks and Classification (use Bayes rule!)
- Posterior decoding vs. Bayes decomposition model Evaluations: accuracy, precision, recall, and F_{β} (F_1) scores
- Basics of language modeling
- Goal: model (be able to predict) and give a score to *language* (whole sequences of characters or words)
- Simple count-based model
- Smoothing (and why we need it): Laplace (add- λ)
- Evaluation: perplexity

Maximum Entropy Models

- Meanings of feature functions and weights
- Use for language modeling or conditional classification
- ("posterior in one go")
 - How to learn the weights: gradient descent
- Distributed Representations & Neural Language Models What embeddings are and what their motivation is A common way to evaluate: cosine similarity

Course Recap

- Recurrent Sequence Modeling
 - Neural/recurrent cell
 - Training setup
- Language modeling, sequence tagging, sequence-to-sequence
 - Examples: LM, POS/NER tagging, machine translation, summarization
 - Pytorch

Word Modeling → Sequences/Structures

Requirements to be a distribution ("proportional to", \propto) Definitions of conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Tasks and Classification (use Bayes rule!) Posterior decoding vs. Bayes decomposition model Evaluations: accuracy, precision, recall, and F_{β} (F_1) scores

Basics of language modeling

Goal: model (be able to predict) and give a score to *language* (whole sequences of characters or words)

Simple count-based model

Smoothing (and why we need it): Laplace (add- λ), interpolation, backoff

Evaluation: perplexity

Maximum Entropy Models

Meanings of feature functions and weights

Use for language modeling or conditional classification

("posterior in one go")

How to learn the weights: gradient descent

Distributed Representations & Neural Language Models What embeddings are and what their motivation is A common way to evaluate: cosine similarity

Course Recap

Recurrent Sequence Modeling Neural/recurrent cell Training setup Language modeling, sequence tagging, sequence-to-sequence Examples: LM, POS/NER tagging, machine translation, summarization Pytorch

Building Blocks of Universal Language Models Attention Transformers Examples: BERT, GPT-2, and T5 Huggingface transformers

Word Modeling → Sequences/Structures

Requirements to be a distribution ("proportional to", \propto) Definitions of conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Tasks and Classification (use Bayes rule!) Posterior decoding vs. Bayes decomposition model Evaluations: accuracy, precision, recall, and F_{β} (F_1) scores

Basics of language modeling

Goal: model (be able to predict) and give a score to *language* (whole sequences of characters or words)

Simple count-based model

Smoothing (and why we need it): Laplace (add- λ), interpolation, backoff

Evaluation: perplexity

Maximum Entropy Models Meanings of feature functions and weights Use for language modeling or conditional classification ("posterior in one go") How to learn the weights: gradient descent

Distributed Representations & Neural Language Models What embeddings are and what their motivation is A common way to evaluate: cosine similarity

Course Recap

Recurrent Sequence Modeling Neural/recurrent cell Training setup Language modeling, sequence tagging, sequence-to-sequence Examples: LM, POS/NER tagging, machine translation, summarization Pytorch

Building Blocks of Universal Language Models Attention Transformers Examples: BERT, GPT-2, and T5 Huggingface transformers

Ethical Considerations of NLP Data bias Model and featurization bias LLMs

Word Modeling

Sequences/Structures

Pick Your Toolkit

PyTorch Huggingface Transformers Deeplearning4j TensorFlow DyNet Caffe Keras MxNet Gluon CNTK

. . .

Comparisons:

https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch

build a system to translate create a QA system

engineering focus

Natural Language Processing

 \approx

Computational Linguistics

science focus

computational bio computational chemistry computational X

these views can co-exist peacefully

Natural Language Processing ≈ Computational Linguistics

Both have impact in/contribute to/draw from:

Machine learning

Information Theory

Data Science

Systems Engineering

Logic

Theory of Computation

Linguistics

Cognitive Science

Psychology

Political Science

Digital Humanities

Education

The NLP Research Community

Papers

- ACL Anthology (<u>http://aclweb.org/anthology</u>) has nearly everything, free! As of late 2023:
 - Over 92,000 papers!
 - Free-text searchable
 - Great way to learn about current research on a topic
 - New search interfaces currently available in beta
 - Find recent or highly cited work; follow citations
 - Used as a dataset by various projects
 - Analyzing the text of the papers (e.g., parsing it)
 - Extracting a graph of papers, authors, and institutions (Who wrote what? Who works where? What cites what?)

Conferences

- Most work in NLP is published as 8-page conference papers with 3 double-blind reviewers.
- Main annual conferences: ACL, EMNLP, NAACL
 - Also EACL, IJCNLP, COLING
 - + journals (TACL, Computational Linguistics [CL])
 - + various specialized conferences and workshops
- Big events, and growing fast!

Thank you for a great semester!

Natural language processing

Semantics

ITE 358

ferraro@umbc.edu

Vision & language processing

Learning with low-to-no supervision