Multitask Learning, and some
Prompting Techniques

Outline

Multi-task Learning

Prompting

Classification Types
(Terminology)

Number of # Label Types
Tasks

(Domains)
Labels are
Associated with

Sentiment: Choose one of

(Binary) Classification 1 2 Toesiie OF neEsiie)
Multi-class 1 59 Part-of-speech: Choose one
Classification of {Noun, Verb, Det, Prep, ...}
Multi-label Sentlmen.t:.Choose multiple

1 > 2 of {positive, angry, sad,

Classification)
excited, ...}

Task 1: part-of-speech

Per task: 2 or > 2 1ask 2:named entity tagging

Multi-task >1 (can apply to binar
Classification PPl Y o

r multi-cl i
or multi-class) Task 1: document labeling
Task 2: sentiment

Multi-Label vs. Multi-Task

* These can be considered the same thing but often
they’re different

* “Task”: a thing of interest to predict

Multi-Label vs. Multi-Task

* These can be considered the same thing but often
they’re different

* “Task”: a thing of interest to predict

* Multi-label classification often involves multiple
labels for the same task

— E.g., sentiment (a tweet could be both “HAPPY” and
“EXCITED”)

Multi-Label vs. Multi-Task

These can be considered the same thing but often they’re
different

“Task”: a thing of interest to predict

Multi-label classification often involves multiple labels for the
same task

— E.g., sentiment (a tweet could be both “HAPPY” and “EXCITED”)

Multi-task learning is for different “tasks,” e.g.,

— Task 1: Category of document (SPORTS, FINANCE, etc.)
— Task 2: Sentiment of document

— Task 3: Part-of-speech per token

— Task 4: Syntactic parsing

Multi-Task Learning

Single-Task Learning

Train a system to “do one thing”
(make predictions for one task)

Multi-Task Learning

Single-Task Learning

. . If you have multiple (T
Train a system to “do one thing” ytasks then tr;n M

(make predictions for one task) multiple systems
- I
. |
) U
A A
D

L]

Multi-Task Learning

Single-Task Learning
If you have multiple (T)

H o H ”
Train a system to “do one thing tasks, then train
(make predictions for one task) multiple systems

different A i
: I
KN N

decoders
.]

A A

L]

different
encoders

Multi-Task Learning

Single-Task Learning Multi-Task Learning

Train a system to “do one thing” Train a system to “do multiple

(make predictions for one task) things” (make predictions for T
different tasks)

y
. Key idea/assumption: if

the tasks are somehow
related, can we leverage

an ability to do task i
well into an ability to do
task j well?

Multi-Task Learning

Single-Task Learning Multi-Task Learning

Train a system to “do one thing” Train a system to “do multiple

(make predictions for one task) things” (make predictions for T
different tasks)

. Key idea/assumption: if
y the tasks are somehow

related, can we leverage

an ability to do task i
well into an ability to do
task j well?

Example: could features/embeddings
useful for language modeling (task i)
also be useful for part-of-speech
tagging (task j)?

Multi-Task Learning

Single-Task Learning Multi-Task Learning

Train a system to “do one thing” Train a system to “do multiple

(make predictions for one task) things” (make predictions for T
different tasks)

Key idea/assumption: if the tasks
are somehow related, can we

leverage an ability to do task i well
into an ability to do task j well?

Multi-Task Learning

Single-Task Learning Multi-Task Learning

Train a system to “do one thing” Train a system to “do multiple

(make predictions for one task) things” (make predictions for T
different tasks)

yz h
;.‘ - ‘
P =

Multi-Task Learning

Single-Task Learning Multi-Task Learning

Train a system to “do one thing” Train a system to “do multiple

(make predictions for one task) things” (make predictions for T
different tasks)

yz h
;.‘ - ‘
P =

same encoder learns
good, general
features/embeddings

Multi-Task Learning

Single-Task Learning Multi-Task Learning

Train a system to “do one thing” Train a system to “do multiple

(make predictions for one task) things” (make predictions for T
different tasks)

yz h
;.‘ - ‘
P =

same encoder learns
good, general
features/embeddings

different decoders
learn how to use those
reps. for each task

General Multi-Task Training Procedure

Given:
T different corpora Cy, ... Cr for tasks
Ce = {(xt, ¥1)s s (X YN}
Encoder E and T different decoders Dy, ... Dy

S~

These have weights
(parameters) you need
to learn

General Multi-Task Training Procedure

Given:

T different corpora Cy, ... Cr for tasks
Ce = {Cxct, y1), s Cenp Y3
Encoder E and T different decoders Dy, ... Dy

Until converged or done:
1. Select the next task t

2. Randomly sample an instance (xl,yl) from C;

3. Train the encoder E and decoder C; on (xf, yf)

Multi-task learning did not begin in 2008

Two Well-Known Instances of Multi-
Task Learning in NLP

Collobert and Weston (2008, ICML) BERT [Devlin et al., 2019 NAACL)

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

A Unified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Ronan Collobert
Jason Weston

NEC Labs America, 4 Independence Way. Princeton, NJ 08540 USA

COLLOBER@NEC-LABS.COM
JASONW (NE! ABS.COM

Abstract

We describe a single convolutional neural net-
work architecture that. given a sentence, out-
puts a host of language processing predic-
tions: part-of-speech tags, chunks, named en-
tity tags. semantic roles, semantically similar
words and the likelihood that the sentence
makes sense (grammatically and semanti-
cally) using a language model. The entire
network is trained jointly on all these tasks
using weight-sharing, an instance of multitask
learning. All the tasks use labeled data ex-
cept the language model which is learnt from
unlabeled text and represents a novel form of
semi-supervised learning for the shared tasks.
We show how both multitask learning and
semi-supervised learning improve the general-
ization of the shared tasks, resulting in state-
of-the-art performance.

Currently, most research analyzes those tasks sepa-
rately. Many systems possess few characteristics that
would help develop a unified architecture which would
presumably be necessary for deeper semantic tasks. In
particular, many systems possess three failings in this
regard: (i) they are shallow in the sense that the clas-
sifier is often linear. (ii) for good performance with
a linear classifier they must incorporate many hand-
engineered features specific for the task: and (iii) they
cascade features learnt separately from other tasks,
thus propagating errors.

In this work we attempt to define a unified architecture
for Natural Language Processing that learns features
that are relevant to the tasks at hand given very lim-
ited prior knowledge. This is achieved by training a
deep neural network, building upon work by (Bengio &
Ducharme, 2001) and (Collobert & Weston, 2007). We
define a rather general convolutional network architec-
ture and describe its application to many well known
NLP tasks including part-of-speech tagging, chunking,

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
ior limitation is that standard lancuase models are

Two Well-Known Instances of Multi-
Task Learning in NLP

Collobert and Weston (2008, ICML) BERT [Devlin et al., 2019 NAACL)

A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

Ronan Collobert COLLOBER@NEC-LABS.COM
Jason Weston JASONW @NEC-LABS.COM

NEC Labs America, 4 Independence Way, Princeton, N.J 08540 USA

Abstract

We describe a single convolutional neural net-
work architecture that, given a sentence, out-
puts a host of language processing predic-
tions: part-of-speech tags, chunks, named en-
tity tags, semantic roles, semantically similar
words and the likelihood that the sentence
makes sense (grammatically and semanti-
cally) using a language model. The entire
network is trained jointly on all these tasks
using weight-sharing, an instance of multitask
learning. All the tasks use labeled data ex-
cept the language model which is learnt from
unlabeled text and represents a novel form of
semi-supervised learning for the shared tasks.
We show how both multitask learning and
semi-supervised learning improve the general-
ization of the shared tasks, resulting in state-
of-the-art performance.

Currently, most research analyzes those tasks sepa-
rately. Many systems possess few characteristics that
would help develop a unified architecture which would
presumably be necessary for deeper semantic tasks. In
particular, many systems possess three failings in this
regard: (i) they are shallow in the sense that the clas-
sifier is often linear, (ii) for good performance with
a linear classifier they must incorporate many hand-
engineered features specific for the task: and (iii) they
cascade features learnt separately from other tasks,
thus propagating errors.

In this work we attempt to define a unified architecture
for Natural Language Processing that learns features
that are relevant to the tasks at hand given very lim-
ited prior knowledge. This is achieved by training a
deep neural network, building upon work by (Bengio &
Ducharme, 2001) and (Collobert & Weston, 2007). We
define a rather general convolutional network architec-
ture and describe its application to many well known
NLP tasks including part-of-speech tagging. chunking,

(already saw this)

Collobert and Weston (2008, ICML)

Core task: Semantic Role Labeling

Present a unified architecture for doing five other,
related NLP tasks

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Collobert and Weston (2008, ICML)

Core task: Semantic Role Labeling

Present a unified architecture for doing five other,
related NLP tasks

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Semantic Role Labeling (SRL)

* For each predicate (e.g., verb)
1. find its arguments (e.g., NPs)
2. determine their semantic roles

John drove from Austin to Dallas in his Toyota Prius.

The hammer broke

— agent: Actor of an action
. Entity affected by the action
— source: Origin of the affected entity
— destination: Destination of the affected entity
— instrument: Tool used in performing action.
— beneficiary: Entity for whom action is performed

Uses of Semantic Roles

* Find the answer to a user’s question
— “Who” questions usually want Agents
— “What” question usually want Patients
— “How” and “with what” questions usually want Instruments
— “Where” questions frequently want Sources/Destinations.
— “For whom” questions usually want Beneficiaries
— “To whom” questions usually want Destinations

* Generate text
— Many languages have specific syntactic constructions that must or should
be used for specific semantic roles.
 Word sense disambiguation, using selectional restrictions

— The bat ate the bug. (what kind of bat? what kind of bug?)
* Agents (particularly of “eat”) should be animate — animal bat, not baseball bat
* Patients of “eat” should be edible —animal bug, not software bug
— John fired the secretary.
John fired the rifle.
Patients of fire, are different than patients of fire,

Collobert and Weston (2008, ICML)

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Collobert and Weston (2008, ICML)

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Collobert and Weston (2008, ICML)

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Part of Speech Tagging

(sequence is
probably not

right!)

Noun Verb Noun Prep Noun Noun

[p[w][w][w][w] [w]
P pLe P P]—>[

o ol th s o

British Left Waffles on Falkland Islands

Part-of-speech
tagging: assign a
part-of-speech tag
to every word in a
sentence

Syntactic Parsing (One Option)

/\

NP VP
NNP VBD NP PP
British Left /\
NNS IN NP
Waffles on /\

(parse is NNP NNPS
probably not Falkland Islands
right!)

(parse from the Berkeley parser:
https://parser.kitaev.io/)

Part-of-speech
tagging: assign a
part-of-speech tag
to every word in a
sentence

Syntactic parsing:
produce an analysis of
a sentence according
to some grammatical

rules

Part-of-speech
tagging: assign a
part-of-speech tag
to every word in a
sentence

Chunking: A Shallow
Syntactic Parsing

Syntactic parsing:
produce an analysis of
a sentence according
to some grammatical

rules

Chunking: A Shallow Syntactic Parse

e (Variant 1) For every token, predict whether
it’s in @ noun-phrase (NP) or not

S

N

NP VP

NNP ‘JBﬁ\PP
British Left /\
NNS IN IGP
Waffles on / \
NNP NNPS

Falkland Islands

Chunking: A Shallow Syntactic Parse

e (Variant 1) For every token, predict whether
it’s in @ noun-phrase (NP) or not

S

N

NP VP
‘ British Left Waffles on Falkland Islands
NNP VBD NP PP
British Left /\
NNS IN NP Treat this as a sequence
Waffles on / \ prediction problem

NNP NNPS

Falkland Islands

Chunking: A Shallow Syntactic Parse

e (Variant 1) For every token, predict whether
it’s in @ noun-phrase (NP) or not

* (Variant 2) For every token, predict the type of
grammatical phrase it should be part of

Collobert and Weston (2008, ICML)

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Collobert & Weston Language
Modeling

Our approach so far: predict a word given some
previous words

pws, oo wi) = | | pwilwer)

V-class classification

Their approach: predict* whether w; is the
correct word, based on context
p(y =1|c=Wi_p, Wi_q, o, Wig1, Witp), Wi)

Binary classification *They actually use a ranking loss, but it’s
close enough to what’s described here

Collobert & Weston Language
Modeling (Example)

Sentence: British Left Waffles on Falkland Islands
Word: “Waffles”

Predict™:
p(y = 1|c = (Left, on), w; = Waffles)
p(y = 0 |c = (Left, on), w; = Hats)

)

*They actually use a ranking 2 d but “Waffles”
ny word bu affles

loss, but it’s close enough to
what’s described here

Collobert and Weston (2008, ICML)

e Part-of-Speech Tagging

* Chunking

* Named Entity Recognition

* Language Modeling

* Prediction of Semantic Relatedness

Prediction of Semantic Relatedness

Are two words “semantically related?”

* Synonym: different word, same meaning
* |s-a relationships

* Part/whole relationships

* (and others)

Prediction of Semantic Relatedness

Are two words “semantically related?”

* Synonym: different word, same meaning
* |s-a relationships
— X hypernym Y: X is a (sub)type of Y
e car hypernym “motor vehicle”
— X hyponym Y: X is a (super)type of Y
e car hyponym sedan

* Part/whole relationships
* (and others)

Prediction of Semantic Relatedness

Are two words “semantically related?”

* Synonym: different word, same meaning

* |s-a relationships
— X hypernym Y: X is a (sub)type of Y
e car hypernym “motor vehicle”
— X hyponym Y: X'is a (super)type of Y
e car hyponym sedan
* Part/whole relationships

— X meronym Y: X is a part of Y
* window meronym car

— X holonym Y: X is the whole, with Y as a part
 car holonym window

* (and others)

WordNet

Knowledge graph containing concept relations

sandwich

I

hamburger hero gyro

WordNet

Knowledge graph containing concept relations

sandwich
hypernym:
specific to general
hamburger hero gyro

a hamburger is-a sandwich

WordNet

Knowledge graph containing concept relations

sandwich
hyponym:
general to specific
hamburger hero gyro

a hamburger is-a sandwich

WordNet

Knowledge graph containing concept relations

sandwich Other relationships too:
* meronymy, holonymy
(part of whole, whole of part)
* troponymy
(describing manner of an event)
e entailment

hamburger hero 8Yr0 (what else must happen in an event)

WordNet Knows About Hamburgers

specific hamburger
sandwich
snack food
dish
nutriment
food
substance
matter
physical entity
general entity

Browsing WordNet

http://wordnetweb.princeton.edu/perl/webwn

Word to search for: | car | Search WordNet |

Display Options: | (Select option to change) v || Change |
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

— e S (n) car, auto, automobile, machine, motorcar (a motor vehicle with four wheels;

Each of usually propelled by an internal combustion engine) "he needs a car to get to work"
these is 3 e S:(n) car, railcar, railway car, railroad car (a wheeled vehicle adapted to the rails of

railroad) "three cars had jumped the rails"
synset — e S (n) car, gondola (the compartment that is suspended from an airship and that
carries personnel and the cargo and the power plant)
(synonym « S (n) car, elevator car (where passengers ride up and down) "the car was on the
set) top floor"
= S:(n)cable car, car (a conveyance for passengers or freight on a cable railway)

“they took a cable car to the top of the mountain”

Browsing WordNet

http://wordnetweb.princeton.edu/perl/webwn

Word to search for: | car | Search WordNet |

Display Options: [(Select option to change) v || Change |

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

e S:(n) car, auto, automobile, machine, motorcar (a motor vehicle with four
wheels; usually propelled by an internal combustion engine) "he needs a car

to get to work”
Get the o direct hyponym | full hyponym
relationships o part meronym
o domain term category
for each o direct hypernym | inherited hypernym | sister term
synset o derivationally related form

e S (n) car, railcar, railway car, railroad car (a wheeled vehicle adapted to the rails of
railroad) "three cars had jumped the rails"

e S (n) car, gondola (the compartment that is suspended from an airship and that
carries personnel and the cargo and the power plant)

e S (n) car, elevator car (where passengers ride up and down) "the car was on the
top floor"

e S (n) cable car, car (a conveyance for passengers or freight on a cable railway)
“they took a cable car to the top of the mountain”

Results (Error Rate: Lower is Better)

Word embedding size
wsz=15 wsz=50 wsz=100

SRL 16.54 17.33 18.40

Results (Error Rate: Lower is Better)

Word embedding size
wsz=15 wsz=50 wsz=100
SRL 16.54 17.33 18.40
SRL + POS 15.99 16.57 16.53
SRL + Chunking 16.42 16.39 16.48
SRL + NER 16.67 17.29 17.21
SRL + Synonyms 15.46 15.17 15.17

| SRL + Language model 14.42 14.30 14.46

Results (Error Rate: Lower is Better)

Word embedding size

wsz=15 wsz=>50 wsz=100
SRL 16.54 17.33 18.40
SRL + POS 15.99 16.57 16.53
SRL + Chunking 16.42 16.39 16.48
SRL + NER 16.67 17.29 17.21
SRL + Synonyms 15.46 15.17 15.17
SRL + Language model 14.42 14.30 14.46
SRL + POS + Chunking 16.46 15.95 16.41
SRL + POS + NER 16.45 16.89 16.29
SRL + POS + Chunking + NER 16.33 16.36 16.27
SRL + POS + Chunking + NER + Synonyms 15.71 14.76 15.48

SRL + POS + Chunking + NER + Language model 14.63 14.44 14.50

Outline

Multi-task Learning

Prompting

Terminology: Few-shot (k-shot)

* Given only k “training” examples, can the
model generalize to test time. A few ways this
can be realized:

— k-shot fine-tuning
— k-shot in-context learning (prompting)

— k-shot prompt tuning

k-shot fine-tuning

* Effectively, your
entire training set
only has k labeled
examples

e Use this training set
to update model
parameters

e Evaluate as normal

0.9 1

0.8 -

0.7 1

MRR

—e— EMMA
0.6 1 Geometric

05 SupCon

]]]]]]]
1 5 10 25 50 75 100
Percent of Training Data

Darvish et al., 2023

GPT-

Language Models are Few-Shot Learners

Tom B. Brown" Benjamin Mann" Nick Ryder” Melanie Subbiah®
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam
Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss

Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh
Daniel M. Ziegler Jeffrey Wu Clemens Winter

Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray

Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
Abstract

We demonstrate that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even becoming competitive with prior state-of-
the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive
language model with 175 billion parameters, 10x more than any previous non-
sparse language model, and test its performance in the few-shot setting. For all
tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks
and few-shot demonstrations specified purely via text interaction with the model.
GPT-3 achieves strong performance on many NLP datasets, including translation,
question-answering, and cloze tasks. We also identify some datasets where GPT-
3's few-shot learning still struggles, as well as some datasets where GPT-3 faces
methodological issues related to training on large web corpora.

1 Introduction

NLP has shifted from leaming task-specific representations and designing task-specific architectures
to using task-agnostic pre-training and task-agnostic architectures. This shift has led to substantial
progress on many challenging NLP tasks such as reading comprehension, question answering, textual
entailment, among others. Even though the architecture and initial representations are now task-
agnostic, a final task-specific step remains: fine-tuning on a large dataset of examples to adapt a task
agnostic model to perform a desired task.

Recent work [RWC ™ 19] suggested this final step may not be necessary. [RWC™ 19] demonstrated
that a single pretrained language model can be zero-shot transferred to perform standard NLP tasks

*Equal contribution
"Johns Hopkins University, OpenAl

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Language Models are Few-Shot Learners

1 Introduction

2.1 Model and Architectures

We use the same model and architecture as GPT-2 [RWC ™ 19], including the modified initialization,
pre-normalization, and reversible tokenization described therein, with the exception that we use
alternating dense and locally banded sparse attention patterns in the layers of the transformer, similar
to the Sparse Transformer [CGRS19]. To study the dependence of ML performance on model size,
we train 8 different sizes of model, from 125 million parameters to 175 billion parameters, with the
last being the model we call GPT-3. This range of model sizes allows us to test the scaling laws
introduced in [KMH™20].

More details on the sizes and architectures of our models can be found in the appendix. We partition
each model across GPUs along both the depth and width dimension in order to minimize data-transfer
between nodes.

Language Mo

2.1 Model and Architectures

We use the same model and architecture as GPT-2 [RWC™ 19], including the modified initialization,
pre-normalization, and reversible tokenization described therein, with the exception that we use
alternating dense and locally banded sparse attention patterns in the layers of the transformer, similar
to the Sparse Transformer [CGRS19]. To study the dependence of ML performance on model size,
we train 8 different sizes of model, from 125 million parameters to 175 billion parameters, with the
last being the model we call GPT-3. This range of model sizes allows us to test the scaling laws
introduced in [KMH™20].

More details on the sizes and architectures of our models can be found in the appendix. We partition
each model across GPUs along both the depth and width dimension in order to minimize data-transfer
between nodes.

B Details of Model Training

GPT-3

To train all versions of GPT-3, we use Adam with 8; = 0.9, 32 = 0.95, and € = 103, we clip the
global norm of the gradient at 1.0, and we use cosine decay for learning rate down to 10% of its value,
over 260 billion tokens (after 260 billion tokens, training continues at 10% of the original learning
rate). There is a linear LR warmup over the first 375 million tokens. We also gradually increase the
batch size linearly from a small value (32k tokens) to the full value over the first 4-12 billion tokens
of training, depending on the model size. Data are sampled without replacement during training (until
an epoch boundary is reached) to minimize overfitting. All models use weight decay of 0.1 to provide
a small amount of regularization [LH17].

During training we always train on sequences of the full n.., = 2048 token context window, packing
multiple documents into a single sequence when documents are shorter than 2048, in order to increase
computational efficiency. Sequences with multiple documents are not masked in any special way
but instead documents within a sequence are delimited with a special end of text token, giving the
language model the information necessary to infer that context separated by the end of text token is
unrelated. This allows for efficient training without need for any special sequence-specific masking.

Nparams 18 the total number of trainable parameters, 7nayers 18 the total number of layers, dpogdel 18
the number of units in each bottleneck layer (we always have the feedforward layer four times the
size of the bottleneck layer, dg = 4 * d,04e1), and dpeaq 18 the dimension of each attention head. All
models use a context window of n.¢, = 2048 tokens.

B Details of Model Training

Language Mo

2.1 Model and Archite«

To train all versions of GPT-3, we use Adam with 8 = 0.9, 32 = 0.95, and € = 108, we clip the
global norm of the gradient at 1.0, and we use cosine decay for learning rate down to 10% of its value,

s v We yse the same model an over 260 billion tokens (after 260 billion tokens, training continues at 10% of the original learning
- GliihSuaty " Amanda pre-normalization and re). There is a linear LR warmup over the first 375 million tokens. We also gradually increase the
Y

batch size linearly from a small value (32k tokens) to the full value over the first 4-12 billion tokens

TomB.Brown® Benjar

GretchenKrueger Ton 5
N altematmg dense and local of training, depending on the model size. Data are sampled without replacement during training (until
i wae tothe Spa:se Transformer 2 epoch boundary is reached) to minimize overfitting. All models use weight decay of 0.1 to provide
5 5 p a small amount of regularization [LH17].
B o we train 8 different sizes ¢

Sam MeCane " . During training we always train on sequences of the full nc¢ = 2048 token context window, packin;
s last bemg the model we ¢ mullipgle docur%lents into); single sequgnce when documents are shorter than 2048, in order to ililcreasi
introduced in [KMH‘ 2(}] computational efficiency. Sequences with multiple documents are not masked in any special way
but instead documents within a sequence are delimited with a special end of text token, giving the
language model the information necessary to infer that context separated by the end of text token is
unrelated. This allows for efficient training without need for any special sequence-specific masking.

More details on the sizes a

each model across GPUs a Tparams 18 the total number of trainable parameters, nayers is the total number of layers, diodel is

between nodes. the number of units in each bottleneck layer (we always have the feedforward layer four times the
size of the bottleneck layer, dg = 4 * diode), and dheaq is the dimension of each attention head. All
models use a context window of n.¢x = 2048 tokens.

ations and designing task-specific architectures
rs. This shift has led to substantial
textual

asks
en though the architecture and initial represcntations are now task-
adapta task

[RWC* 19

NLP tasks

34th Confesence on Neural lnformation Processing Systems (NewrIPS 2020), Vancouver, Canada

Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 043
Wikipedia 3 billion 3% 34

Table C.1: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples
during training that are drawn from a given dataset, which we intentionally do not make proportional
to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up
to 3.4 times during training while other datasets are seen less than once.

B Details of Model Training

2.1 Model and Archites . .) .
To train all versions of GPT-3, we use Adam with 8 = 0.9, 32 = 0.95, and € = 108, we clip the
global norm of the gradient at 1.0, and we use cosine decay for learning rate down to 10% of its value,
- bl Alrann twnlala~ lesian ab TNOL AF thn Awiniaal <

G P 3 -------- ' Prafulla DI We use the cama mndal an Z..ohcnina o £abbane VEN Wil nw + e Thawiil 0
I - ' pre-norma : e
G T 2 uantit Weight in Epochs elapsed when
o alternating Q y g P P

" to the Spa Dataset (tokens) training mix training for 300B tokens
jamin Chess we train 8 Common Crawl (filtered) 410 billion 60% 0.44
smicns 4 ast being WebText2 19 billion 22% 2.9
introduced Books1 12 billion 8% 1.9
. Books2 55 billion 8% 043
More detai Wikipedia 3 billion 3% 3.4

each mode
between n

Table C.1: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples
. during training that are drawn from a given dataset, which we intentionally do not make proportional
to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up
to 3.4 times during training while other datasets are seen less than once.

formation Processng Systems (NewrIPS 2020), Vancouver, Canada

“Since our training dataset is sourced from the internet, it
is possible that our model was trained on some of our
benchmark test sets...On the one hand, the dataset and
model size are about two orders of magnitude larger than
those used for GPT-2, and include a large amount of
Common Crawl, increasing the potential for contamination
and memorization. On the other hand, precisely due to the
large amount of data, even GPT-3 175B does not overfit its
training set by a significant amount, measured relative to a
held-out validation set with which it was deduplicated
(Figure C.1). Thus, we expect that contamination is likely to
be frequent, but that its effects may not be as large as
feared...” (Appendix C)

GPT-3

“Since our training dataset is
sourced from the internet, it is
possible that our model was
trained on some of our
benchmark test sets...On the one
hand, the dataset and model size
are about two orders of
magnitude larger than those used
for GPT-2, and include a large
amount of Common Crawl,
increasing the potential for
contamination and memorization.
On the other hand, precisely due
to the large amount of data, even
GPT-3 175B does not overfit its
training set by a significant
amount, measured relative to a
held-out validation set with which
it was deduplicated (Figure C.1).
Thus, we expect that
contamination is likely to be
frequent, but that its effects may
not be as large as feared...”
(Appendix C)

Language Mo

B Details of Model Training

2.1 Model and Archite«

TomB.Brown® Benjar

To train all versions of GPT-3, we use Adam with 8 = 0.9, 32 = 0.95, and € = 108, we clip the
global norm of the gradient at 1.0, and we use cosine decay for learning rate down to 10% of its value,

J-rdk-phn' raan WWa y1se the cama madal an L. ALA Wi linn talamn (afone VLN Lillinm taliann toninine anmtinnan né TNOL Af tha avicinal Taneaine A
P gii;?lzxa Quantity Weight in Epochs elapsed when
e to the Sp i Dataset (tokens) training mix training for 300B tokens
P—— we train 8 Common Crawl (filtered) 410 billion 60% 0.44
smwcoas A Jagt being WebText2 19 billion 22% 29
introduced Books1 12 billion 8% 1.9
. Books2 55 billion 8% 0.43
More detai Wikipedia 3 billion 3% 3.4

each mode
between ni

Table C.1: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples
during training that are drawn from a given dataset, which we intentionally do not make proportional
to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up
to 3.4 times during training while other datasets are seen less than once.

N eval on only
clean data
did better

eval on all data
(including dirty)

30% A
® QuAC
o 20% @
3
P
EQ
.,g 5' 10%
Cé E Symbol Insertion . ® P °
T 0% . r oo ‘—l—.—*—“
=y * % o $°
&9 SQuADv2 Winograd PIQA]
£ 5 WMT16 en->de Anagrams 2~ @
O3 -10% :
€ Q WMT16 de->en SO e L%
5 < Anagrams 1
o
o 20% @ DROP
Reversed Words -@
-30% N
0% 25% 50% 75% 100%

Percentage of Data Clean in Dataset

|, did better

Terminology: Few-shot (k-shot)

* Given only k “training” examples, can the
model generalize to test time. A few ways this
can be realized:

— k-shot fine-tuning
— k-shot in-context learning (prompting)

— k-shot prompt tuning

k-shot in-context learning (prompting)

Effectively, your
entire training set

. . i Eval
Only haS k |3b€|ed instances K-dim:::'i::;:sl.vector . ‘m!-nzgzgzémpm (correct) Function
example S representations (one . °2‘J:Z§Z§°Cﬁ?§:?.'§? labels
per instance)

However, rather .
than using this ' .9

ini O ST
training set to S \ /] [OR
update model ' — 18—
parameters... o / P T a—

S @) y uation

Prepend those k ' 8 /
labeled examples to ' 9
each test instance. 3) score

Evaluate as normal

Inference only: No further learning /
tuning of model parameters

k-shot in-context learning (prompting)

Eval Function

] features: ML model:
. * output scores/labels labels
representations (one * contains weights 6

per instance)

AN
7

k (=4)
shot

Evaluation

Function

score

T 11}
|

0000 0000 0000 0000 0000

1-shot prompting

Model Input

tennis balls does he have now?
A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

-

=

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

Model Output

A: The answer is 27. x

https://openreview.net/pdf?id=_VjQlMeSB J, Fig. 1

https://openreview.net/pdf?id=_VjQlMeSB_J

0-shot prompting

Model Input
~ D)
* Or pose as a -

q ue St | on. Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

 Describe the
task (maybe).

* No examples as r

_
part of the
prOm pt, ‘ A: The answer is 27. x)

Does it work?

SuperGLUE BoolQ CB CB COPA RTE
Average Accuracy Accuracy F1 Accuracy Accuracy
Fine-tuned SOTA 89.0 91.0 96.9 93.9 94.8 92.5
Fine-tuned BERT-Large 69.0 774 83.6 5.7 70.6 7 &)
GPT-3 Few-Shot 71.8 76.4 75.6 52.0 92.0 69.0
WiC WSC MultiRC MultiRC ReCoRD ReCoRD
Accuracy Accuracy Accuracy Fla Accuracy F1
Fine-tuned SOTA 76.1 93.8 62.3 88.2 92.5 93.3
Fine-tuned BERT-Large 69.6 64.6 24.1 70.0 713 72.0
GPT-3 Few-Shot 494 80.1 30.5 75.4 90.2 91.1

Table 3.5: Performance of GPT-3 on SuperGLUE compared to fine-tuned baselines and SOTA. All
results are reported on the test set. GPT-3 few-shot is given a total of 32 examples within the context
of each task and performs no gradient updates.

Does it work?

Setting En—Fr Fr—En En—De De—En En—Ro Ro—En
SOTA (Supervised) 45.6° 35.0% 41.2¢ 40.2¢ 38.5¢ 39.9¢
XM [LC19] 334 33.3 26.4 34.3 333 31.8
MASS [STQ"19] 37.5 34.9 28.3 352 352 33:1
mBART [LGG™20] - - 29.8 34.0 33.0 30.5
GPT-3 Zero-Shot 25:2 212 24.6 272 14.1 19.9
GPT-3 One-Shot 28.3 337 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU
when translating into English reflecting its strength as an English LM. We report BLEU

Let’s say you have more than k examples,
but want to do k-shot prompting...

Different strategies for choosing the examples:
* randomly (fixed)

* randomly per instance

* “nearest neighbor”

* “expert selection”

C h ain- Of— Chain-of-Thought Prompting Elicits Reasoning

in Large Language Models
Thought
P rO m pti n g Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google. com

Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.

Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PalLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

https://openreview.net/pdf?id=_VjQlMeSB_J

Chain-of-Thought

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

- J

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

The answer is 11 ;

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

A: The answer is 27. x

do they have?
_),

A:

The
answeris 9.

https://openreview.net/pdf?id=_VjQlMeSB J, Fig. 1

https://openreview.net/pdf?id=_VjQlMeSB_J

I n St r U Ct G PT Training language models to follow instructions

with human feedback

Long Ouyang* Jeff Wu* Xu Jiang® Diogo Almeida® Carroll L. Wainwright*
Pamela Mishkin® Chong Zhang Sandhini Agarwal Katarina Slama Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell' Peter Welinder Paul Christiano®'
Jan Leike” Ryan Lowe”
OpenAl
Abstract

Making language models bigger does not inherently make them better at following
a user's intent. For example, large language models can generate outputs that are
untruthful, toxic, or simply not helpful to the user. In other words, these models are
not aligned with their users. In this paper, we show an avenue for aligning language
models with user intent on a wide range of tasks by fine-tuning with human
feedback. Starting with a set of labeler-written prompts and prompts submitted
through a language model API, we collect a dataset of labeler demonstrations of
the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show improvements in truthfulness and reductions
in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.

https://proceedings.neurips.cc/paper_files/paper/2022/hash/blefde53be364a73914f58805a001731-Abstract-Conference.html

Step 1

Collect demonstration data,
and train a supervised policy.

InstructGPT

Step 2

Collect comparison data,
and train a reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

InstructGPT

Step 1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis
sampled from our P
xplain the moon
prompt dataset. landing to a 6 year old
Y
A labeler
demonstrates the @
desired output 7
behavior. Some pec;ple went
to the moon...
This data is used SFT
to fine-tune GPT-3 ./‘).5{\.
with supervised Y
learning. 2

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers.

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

\
Y

e

V4

Some people went
to the moon...

SFT
. 9

LRI,
.W../.

Vi
2EE

InstructGPT

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

Explain the moon
landing to a 6 year old

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers.

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

\
Y

e

V4

Some people went
to the moon...

InstructGPT

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Maon is natural Poopla went to
satellite of the moon

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers.

Terminology: Few-shot (k-shot)

* Given only k “training” examples, can the
model generalize to test time. A few ways this
can be realized:

— k-shot fine-tuning
— k-shot in-context learning (prompting)

— k-shot prompt tuning

k-shot prompt tuning

* Like k-shot in-context prompting, keep most of
the language model’s parameters fixed /
frozen (<~)

e But, learn smaller embedding models for the
different tasks’s prompts

 Still need a training step

Outline

