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Five Broad Categories of Neural Networks

Single Input, Single Output

Single Input, Multiple 
Outputs

Multiple Inputs, Single 
Output

Multiple Inputs, Multiple 
Outputs (“sequence 

prediction”: no time delay)

Multiple Inputs, Multiple 
Outputs (“sequence-to-
sequence”: with time 

delay)

Fig. 2 (Wolf et al., 2020: 
https://arxiv.org/pdf/1910.03771.pdf) 

(“single input” ~= single, flat vector, e.g., BoW of a document)
(single output ~= one prediction only)

https://arxiv.org/pdf/1910.03771.pdf
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Sequence (Multiple) Input, Single 
Label Output

x0

h0

Recurrent: Sequence input, one output

Document classification
Action recognition in video (high-level)

h1 h2

y

x1 x2



Sequence (Multiple) Input, Single 
Label Output

x0

h0

Recurrent: Sequence input, one output

Document classification
Action recognition in video (high-level)

h1 h2

y

x1 x2

Think of this as generalizing using maxent 
models to build discriminatively trained 

classifiers
𝑝 𝑦	 𝑥) = exp(𝜃!"	,lat_feats 𝑥 ) 

è
𝑝 𝑦	 𝑥) = exp(𝜃!"	recurrent_feats 𝑥 )



Example: RTE (many options)
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball 
Association championships.
z: The Bulls basketball team is 
based in Chicago.

p(       | )ENTAILED

s0

hs,0 hs,N

y

sN

… 

z0

hz,0 hz,M

zM

… 

(form a single sequence of the 
premise & hypothesis)



Example: RTE (many options)
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball 
Association championships.
z: The Bulls basketball team is 
based in Chicago.

p(       | )ENTAILED

s0

hs,0 hs,N

y

sN

… 

z0

hz,0 hz,M

zM

… 

(form two sequences: one of the 
premise & one of the hypothesis)



Reminder!

GLUE
https://gluebenchmark.com/ 

https://super.gluebenchmark.com/ 

Many (but not all) of these 
tasks fall into the 

Sequence Input, Label Output

https://gluebenchmark.com/
https://super.gluebenchmark.com/


Sequence Input, Sequence Output 
(“sequence prediction”: no time delay)

x0

h0

Recursive: Sequence input, Sequence 
output

Part of speech tagging
Named entity recognition

h1 h2

x1 x2

y0 y1 y2



Example 1: Part of Speech Tagging

British   Left  Waffles  on   Falkland   Islands

Noun Verb Noun Prep Noun Noun
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Task: Predict a part-of-speech tag 
for each word in a provided 

sentence 
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Example 2: Named Entity Recognition

British   Left  Waffles  on   Falkland   Islands

ORG ORG Other Other LOC LOC
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Task: Predict a named entity tag 
for each word in a provided 

sentence 



What are Named 
Entities?

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of 
predefined categories of interest

Person names
Organizations (companies, government organisations, 

committees, etc)
Locations (cities, countries, rivers, etc)
Date and time expressions
Measures (percent, money, weight etc), email addresses, Web 

addresses, street addresses, etc. 
Domain-specific: names of drugs, medical conditions, names 

of ships, bibliographic references etc.

Cunningham and Bontcheva (2003, RANLP Tutorial)

Reminder!



Example 2: Named Entity Recognition
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Example: Named Entity Recognition
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How to evaluate sequence prediction w/o 
no time delay (*ForTokenClassification)

• Treat it as a standard prediction task
– e.g., Accuracy, Precision, Recall, F1

• Most common: metric per token prediction
– For every token, did you make the correct 

prediction?
• Less common but still helpful: metric per 

sequence
– For every sequence, was the entire sequence 

correct?



Sequence Input, Sequence Output 
(“sequence-to-sequence”: time delay)

x0

h0

Recursive: Sequence input, 
Sequence output (time delay)

Machine translation
Sequential description

Summarization

h1 h2

x1 x2

o0

y0

o1

y1

o2

y2

o3

y3



Example: Translation

Translate English (observed) into French:

The cat is on the chair.

Le chat est sur la chaise.

variable # of 
input words

variable # of 
output words



Example: Translation
Translate English (observed) into French:

The cat is on the chair.

Le chat est sur la chaise.

x0

h0 h2
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o3
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… … 



RNN Output:
Visual Storytelling

CNN CNN CNN CNN CNN

GRU GRU GRU GRU GRU

Encode

Decode

GRUs GRUs …

The 
family got 
together 

for a 
cookout

They had a lot 
of delicious 

food.

The family got together for a cookout. They had a lot of delicious food. 
The dog was happy to be there. They had a great time on the beach. 

They even had a swim in the water.
Huang et al. (2016)

Human Reference

The family has gathered around the dinner table to share a meal 
together. They all pitched in to help cook the seafood to perfection.

Afterwards they took the family dog to the beach to get some exercise. 
The waves were cool and refreshing! The dog had so much fun in the 
water. One family member decided to get a better view of the waves!



Teacher Forcing vs. No Teacher Forcing

loudly EOS
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hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy dog

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

blackThe

loudlyBOS verymeowedfluffy catgrayThe

loudly EOSverymeowedfluffy catgrayThe

word prob.

The .2

gray .01

blue .001

fluffy .0005

wet .0005

… …

word prob.

black .2

gray .12

blue .001

fluffy .0005

wet .0005

… …

word prob.

fluffy .2

gray .01

blue .001

bald .0005

wet .0005

… …

word prob.

dog .2

cat .19

blue .001

fluffy .0005

wet .0005

… …

word prob

meowed .3

purred .2

hissed .1

fluffy .001

wet .001

… …

word prob.

very .2

lots .1

softly . 1

fluffy .0005

wet .0005

… …

word prob

loudly .2

softly .01
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… …

word prob.

EOS .3

and .1

blue .001

fluffy .0005

wet .0005

… …

log .2 log .12 log .2 log .19 log .3 log .2 log .2 log .2

(then negate, average)
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How to evaluate sequence prediction with 
no time delay (*ForConditionalGeneration) 

Human Eval
• Get responses from your 

model
• Develop a questionnaire 
• Show responses to human 

evaluators, getting 
“goodness”
– Goodness can be: fluency, 

coherence, appropriateness, 
etc. Very task dependent.

• Single response vs. 
comparison

Automatic Eval



Human Eval: Single Response vs. 
Comparison

Single Response Example
For a translation task:
Original: The cat is on the 
chair.
Proposed translation: Le chat 
est sur la chaise.

Question: Is this a “good” 
translation?



Human Eval: Single Response vs. 
Comparison

Single Response Example
For a translation task:
Original: The cat is on the 
chair.
Proposed translation: Le chat 
est sur la chaise.

Question: Is this a “good” 
translation?

Comparison
For a translation task:
Original: The cat is on the 
chair.
Proposed translation 1: Le chat 
est sur la chaise.
Proposed translation 2: Le chat 
sont sur la chaise.

Question: Which translation do 
you “prefer?”



How to evaluate sequence prediction with 
no time delay (*ForConditionalGeneration) 

Human Eval
• Get responses from your model
• Develop a questionnaire 
• Show responses to human 

evaluators, getting “goodness”
– Goodness can be: fluency, 

coherence, appropriateness, etc. 
Very task dependent.

• Single response vs. comparison

Automatic Eval
• “Accuracy”-based

– Perplexity (maybe but can overfit; 
not always favored)

– Word error rate
• “Precision”-based

– BLEU (word n-gram overlap)
• “Recall”-based

– ROUGE (word n-gram overlap)
• “F1”-based

– METEOR (but only unigram)
• Embedding based

– BERTScore (ICLR 2020; 
https://openreview.net/pdf?id=Ske
HuCVFDr) 

Huggingface evaluate library:
https://huggingface.co/docs/evaluate/index 

https://openreview.net/pdf?id=SkeHuCVFDr
https://openreview.net/pdf?id=SkeHuCVFDr
https://huggingface.co/docs/evaluate/index


A note on {BLEU, ROUGE}

• Terminology
– “Hypotheses”: predictions
– “References”: targets / gold labels

• Just as there are macro and micro {precision, 
recall}, we have similar notions here
– “corpus” {BLEU, ROUGE} à micro
– “sentence” {BLEU, ROUGE} à macro



Key Highlights (1/3)

• While there are a 
number of different 
types of networks, 
it’s helpful to think of 
them as encoding 
(learning to featurize) 
the input, and then 
making an 
appropriate 
prediction (“decode”)

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence 
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay); also called “encoder-

decoder”)



ML/NLP Framework for 
Prediction

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Evaluation 
Function

Reminder 
(from deck 

4)!



Helpful ML Terminology 
Recap (3)

Learning: 
 the process of adjusting the model’s weights to 
learn to make good predictions.

Inference / Prediction / Decoding / Classification: 
 the process of using a model’s existing weights 
to make (hopefully!) good predictions

Reminder 
(from deck 

3)!



A Couple Notes on “Encoder-Decoder” 
Models

• Many people use the 
term “encoder-
decoder” to describe 
the “sequence-to-
sequence with time 
delay” model type. 
But…

• “Encoder-decoder” 
terminology is quite 
broad

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence 
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)



Key Highlights (2/3)
• While there are a number 

of different types of 
networks, it’s helpful to 
think of them as 
encoding (learning to 
featurize) the input, and 
then making an 
appropriate prediction 
(“decode”)

• This encoding is driven by 
learning what is effective 
for language modeling

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence 
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)



Key Highlights (3/3)
• While there are a number 

of different types of 
networks, it’s helpful to 
think of them as encoding 
(learning to featurize) the 
input, and then making an 
appropriate prediction 
(“decode”)

• This encoding is driven by 
learning what is effective 
for language modeling

• This decoding can be 
“prediction” or “language 
modeling” 

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence 
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)



Some Consequences of these Key Highlights

• While there are a number 
of different types of 
networks, it’s helpful to 
think of them as encoding 
(learning to featurize) the 
input, and then making an 
appropriate prediction 
(“decode”)

• This encoding is driven by 
learning what is effective 
for language modeling

• This decoding can be 
“prediction” or “language 
modeling” 

Encoding: use a modeling structure 
that is effective. This could be:
• a bag-of-words style, or
• an auto-regressive (left-to-right) 

encoder, or
• a bi-directional / auto-encoding 

encoder

Decoding: an auto-regressive (left-to-
right) structure, e.g., process one item, 
then another, then another



Encoder vs. 
Decoder

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

Encoding: use a modeling 
structure that is effective. This 
could be:
• a bag-of-words style, or
• an auto-regressive (left-to-

right) encoder, or
• a bi-directional / auto-

encoding encoder

Decoding: an auto-regressive 
(left-to-right) structure, e.g., 
process one item, then another, 
then another

https://arxiv.org/pdf/1910.03771.pdf


Outline

Transformer Language Models as General 
Language Encoders 

The Attention Mechanism



Two Well-Known (Recent) Instances of 
Learning from Language Models

GPT2 [Radford et al., 2018] BERT [Devlin et al., 2019 NAACL)



GPT-2 & BERT (and others) In Practice

• Use pytorch code
à The huggingface transformers package is very 
popular
 Some hooks for tensorflow code

• Read the documentation!
– (but it may be dense): open a REPL/Colab 

notebook and play around!



GPT-2 & BERT (and others) In Practice

• Use pytorch code
à The huggingface transformers package is very 
popular
 Some hooks for tensorflow code

• Read the documentation!
– (but it may be dense): open a REPL/Colab notebook 

and play around!
• Exception: GPT-3, GPT-4
– Model not publicly downloadable, must access 

through a completely separate API
– Quota-based



GPT-2 Take-Away

Language models can provide an effective way of 
learning embeddings that are useful for downstream 

tasks

• Auto-regressive model that uses a transformer cell

𝑝 𝑤!…𝑤" =%
#

𝑝 𝑤# 𝑤!, … , 𝑤#$!)

https://openai.com/blog/gpt-2-1-5b-release/
https://github.com/openai/gpt-2



GPT-2 Model & Representation

x0

h0 h1 hN

x1 xN

y0 y1 yN

BOS British Islands

British Left [CLS]

…
Computed 
w/ 
transformer 
cells



BERT Take-Aways

1. Demonstration of bidirectional transformer 
for language understanding

2. Clean separation of “pre-training” and “fine-
tuning” tasks

3. Clear demonstration that language model 
“pre-training” can yield useful embeddings



Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce 
effective embeddings through 
“general” training objectives that 
are end-task agnostic



Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce 
effective embeddings through 
“general” training objectives that 
are end-task agnostic

1. Next-sentence prediction 
[NSP]

2. Masked Language Modeling 
[MLM]

Pre-training: NSP
• Given two sentences 𝑠) and 
𝑠*, predict whether 𝑠* 
follows 𝑠) in “natural” text



Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce 
effective embeddings through 
“general” training objectives that 
are end-task agnostic

1. Next-sentence prediction 
[NSP]

2. Masked Language Modeling 
[MLM]

Pre-training: MLM
• Given a sentence 𝑠 = 𝑤)…𝑤+, 

mask out (remove) a word 𝑤, 
and predict what that word 
should be

“The cat chased the mouse” è 
“The cat [MASK] the mouse”

𝑝 𝑤	 The	cat MASK the	mouse)



Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce 
effective embeddings through 
“general” training objectives that 
are end-task agnostic

1. Next-sentence prediction 
[NSP]

2. Masked Language Modeling 
[MLM]

Fig. 1



Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce 
effective embeddings through 
“general” training objectives that 
are end-task agnostic

1. Next-sentence prediction 
[NSP]

2. Masked Language Modeling 
[MLM]

Fine-Tuning
Learning task-specific 
decoders using the 
embeddings produced from 
the pre-training, e.g.,

• RTE
• Question-answering
• <Your task here>



Pretraining vs. Fine-tuning

Fine-Tuning
Learning task-specific 
decoders using the 
embeddings produced from 
the pre-training, e.g.,

• RTE
• Question-answering
• <Your task here>

Fig. 1



Pre-training then Fine-tuning

Fig. 1



BERT Representation

1. A special [CLS] token should precede the 
entire input to BERT

2. Every sentence should be followed by a 
special [SEP] token 

3. The input must be tokenized in a special way
4. Segment & position embeddings must be 

provided



BERT Representation

x1

h1 h2 hN+1

x2 xN+1

y1 y2 yN+1

British Left [SEP]

…

British Left [SEP]

x0

h0

y0
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1. A special [CLS] token should 
precede the entire input to BERT



BERT Representation
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2. Every sentence should be 
followed by a special [SEP] token 



BERT 
Representation 

(Even More)

Fig. 2
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BERT Representation (Even More)

Fig. 2

1. A special [CLS] token should 
precede the entire input to BERT



BERT Representation (Even More)

Fig. 2

2. Every sentence should be followed 
by a special [SEP] token 



BERT Representation (Even More)

Fig. 2

3. The input must be tokenized in a 
special way



BERT Representation (Even More)

Fig. 2

4. Segment & position embeddings 
must be provided



BERT 
Representation 

(Even More)

Fig. 2



Transformer Language Model
 Take-Aways

1. Clean separation of “pre-training” and “fine-
tuning” tasks

2. Clear demonstration that language model 
“pre-training” can yield useful embeddings



BERTFor<X>

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

https://arxiv.org/pdf/1910.03771.pdf


BERTFor<X>

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

Both SequenceClassification and TokenClassification 
need some form of a classifier.

Q: How do we do 
(compute, represent) 

that?

https://arxiv.org/pdf/1910.03771.pdf


BERTFor<X>

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

Both SequenceClassification and TokenClassification 
need some form of a classifier.

Q: How do we do 
(compute, represent) 

that?

A: Linear layer (+ cross-
entropy loss, and 

conceptually softmax)

https://arxiv.org/pdf/1910.03771.pdf


BERTForSequenceClassification

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

Both SequenceClassification and TokenClassification 
need some form of a classifier.

Q: How do we do 
(compute, represent) 

that?

A: Linear layer (+ cross-
entropy loss, and 

conceptually softmax)

y

W

https://arxiv.org/pdf/1910.03771.pdf


BERTForTokenClassification

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

Both SequenceClassification and TokenClassification 
need some form of a classifier.

Q: How do we do 
(compute, represent) 

that?

A: Linear layer (+ cross-
entropy loss, and 

conceptually softmax)

y0

W

y0

W

y0

W

y0

W

(single linear 
layer, re-used 

across the 
tokens)

https://arxiv.org/pdf/1910.03771.pdf


Encoder vs. 
Decoder

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf) 

Encoding: use a modeling 
structure that is effective. This 
could be:
• a bag-of-words style, or
• an auto-regressive (left-to-

right) encoder, or
• a bi-directional / auto-

encoding encoder

Decoding: an auto-regressive 
(left-to-right) structure, e.g., 
process one item, then another, 
then another

https://arxiv.org/pdf/1910.03771.pdf


Outline

Transformer Language Models as General 
Language Encoders

The Attention Mechanism



Effective, but challenges remain

• Sequence Input, 
Label Output (w/ 
time delay)

• Sequence Input, 
Sequence Output 
(w/o time delay)

• Sequence Input, 
Sequence Output 
(w/ time delay)

Core effective idea: 
Use the basic recurrent 

(autoregressive) structure to 
capture longer-range dependencies 
that enable us to map from Input to 

Output

Challenges: 
• Key, salient portions of the Input 

can become “buried”

• Knowing what to pay attention to 
is difficult



Attention

A mechanism for signaling where in the input to 
focus (“attend to”) when producing some 

output

Each attention mechanism results in a 
probability distribution over the input

There are many ways of computing this



Attention results in learning how to 
form a “good” linear combination

e.g., how to do a weighted average 
across a number of items



Example: Translation

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

… 

Idea: generating the 
first word would be 
easier if we could 
look back to the 

input... but which 
word do we want to 

focus on?



Example: Translation

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

… 

Idea: generating the 
first word would be 
easier if we could 
look back to the 

input... but which 
word do we want to 

focus on?

(Very high 
confidence in “The” 
would probably help 

produce “Le”)



Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

… 

Idea: generating the 
first word would be 
easier if we could 
look back to the 

input... but which 
word do we want to 

focus on?

Attention: a 
learnable way of 

knowing what words 
to look back to
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Attention

1. For a specific input 𝑥#, attention computes a 
distribution 𝛼 over K possible values (𝑧!, 𝑧%, … , 𝑧&)
– Often a form like 

𝛼(𝑥7)8 = softmax(sim(𝑥7 , 𝑧8))
2. That distribution 𝛼 is then used to linearly 

combine those K values together into a new 
representation

3. That representation is then used as features for 
classification (or input to another layer)



Attention
1. For a specific input 𝑥7, attention computes a distribution 𝛼 

over K possible values (𝑧9, 𝑧:, … , 𝑧;)
– Often a form like 

𝛼(𝑥,)- = softmax(sim(𝑥,, 𝑧-))
2. That distribution 𝛼 is then used to linearly combine those K 

values together into a new representation
– Often a form like

𝑢, = ?
-.)

/

𝛼-𝑧-

3. That representation is then used as features for classification 
(or input to another layer)



Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

… 

For a specific input 𝑜!, attention 
computes a distribution 𝛼 over 
(N+1) possible values 
ℎ!, ℎ", … , ℎ#

𝛼(𝑜!)$ = softmax(sim(𝑜!, ℎ$))
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Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

… 

For a specific input 𝑜!, attention 
computes a distribution 𝛼 over 
(N+1) possible values 
ℎ!, ℎ", … , ℎ#

Use 𝛼 to linearly combine those 
(N+1) values together into a new 
representation

𝑢& = D
$'!
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𝛼 𝑜! =

ℎ!: 0.3
ℎ": 0.15
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ℎ#: 0.07
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Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

… 

For a specific input 𝑜!, attention 
computes a distribution 𝛼 over 
(N+1) possible values 
ℎ!, ℎ", … , ℎ#

Use 𝛼 to linearly combine those 
(N+1) values together into a new 
representation

Use 𝑢! as features for 
classification

𝛼 𝑜! =

ℎ!: 0.3
ℎ": 0.15
ℎ%: 0.07
…

ℎ#: 0.07

𝑢& = 𝛼! ℎ!	vec + ⋯+ 𝛼# ℎ#	vec

0.070.15
0.3

u0



Vaswani et al. 
(NeurIPS, 2017)



“Attention Is All You Need”: Take-Aways

1. Formulation of attention as a query-key-value 
triple

2. “Transformer” model that uses self-attention

3. Demonstration that the transformer can 
outperform sequence-to-sequence recurrent 
models (but at a large computational cost!)



“Attention Is All You Need” Description 
of Attention

“An attention function can be described as 
mapping a query and a set of key-value pairs to 
an output, where the query, keys, values, and 

output are all vectors.
The output is computed as a weighted sum of 

the values,
where the weight assigned to each value is 

computed by a compatibility function of the 
query with the corresponding key.”

these query, key, value, and output 
items will be task dependent
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“Attention Is All You Need” Description 
of Attention

“An attention function can be 
described as mapping a query and 

a set of key-value pairs to an 
output, where the query, keys, 

values, and output are all vectors.

The output is computed as a 
weighted sum of the values,

where the weight assigned to each 
value is computed by a 

compatibility function of the query 
with the corresponding key.”

The cat is on the chair.

[Le]   [chat]  … [fromage] …

chat

[The]   [cat]  … [bandage] …

Le ◊

query: input & current translation

key: English words

value: French words

output: next translated word
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a set of key-value pairs to an 
output, where the query, keys, 

values, and output are all vectors.
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“Attention Is All You Need” Description 
of Attention (advanced)

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾( 𝑉

similarity 
function (𝑑$  is 

embedding dim.)
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“Attention Is All You Need” Description 
of Attention (advanced)

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾( 𝑉

similarity 
function (𝑑$  is 

embedding dim.)

attending distribution 
𝛼 from before

linear combination over outputs



Multi-head Attention



Multi-head Attention

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾( 𝑉



Multi-head Attention

Attention 𝑄𝑊7
< , 𝐾𝑊7

; , 𝑉𝑊7
=

= softmax
1
𝑑8
(𝑄𝑊7

<)(𝐾𝑊7
;) 𝑉𝑊7

=
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Key Highlights
• While there are a number of 

different types of networks, it’s 
helpful to think of them as 
encoding (learning to featurize) 
the input, and then making an 
appropriate prediction (“decode”)

• This encoding is driven by learning 
what is effective for language 
modeling

• This decoding can be “prediction” 
or “language modeling” 

• Attention is the building block 
behind many of these approaches

• Attention learns how to perform 
linear combinations of 
embeddings

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence 
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)


