
(Even More) Language Modeling:
Attention, and

Building Blocks of Transformers

CMSC 473/673
Frank Ferraro

Five Broad Categories of Neural Networks

Single Input, Single Output

Single Input, Multiple
Outputs

Multiple Inputs, Single
Output

Multiple Inputs, Multiple
Outputs (“sequence

prediction”: no time delay)

Multiple Inputs, Multiple
Outputs (“sequence-to-
sequence”: with time

delay)

Fig. 2 (Wolf et al., 2020:
https://arxiv.org/pdf/1910.03771.pdf)

(“single input” ~= single, flat vector, e.g., BoW of a document)
(single output ~= one prediction only)

https://arxiv.org/pdf/1910.03771.pdf

Five Broad Categories of Neural Networks

Single Input, Single Output

Single Input, Multiple
Outputs

Multiple Inputs, Single
Output

Multiple Inputs, Multiple
Outputs (“sequence

prediction”: no time delay)

Multiple Inputs, Multiple
Outputs (“sequence-to-
sequence”: with time

delay)

Fig. 2 (Wolf et al., 2020:
https://arxiv.org/pdf/1910.03771.pdf)

(“single input” ~= single, flat vector, e.g., BoW of a document)
(single output ~= one prediction only)

https://arxiv.org/pdf/1910.03771.pdf

Five Broad Categories of Neural Networks

Single Input, Single Output

Single Input, Multiple
Outputs

Multiple Inputs, Single
Output

Multiple Inputs, Multiple
Outputs (“sequence

prediction”: no time delay)

Multiple Inputs, Multiple
Outputs (“sequence-to-
sequence”: with time

delay)

Fig. 2 (Wolf et al., 2020:
https://arxiv.org/pdf/1910.03771.pdf)

(“single input” ~= single, flat vector, e.g., BoW of a document)
(single output ~= one prediction only)

https://arxiv.org/pdf/1910.03771.pdf

Five Broad Categories of Neural Networks

Single Input, Single Output

Single Input, Multiple
Outputs

Multiple Inputs, Single
Output

Multiple Inputs, Multiple
Outputs (“sequence

prediction”: no time delay)

Multiple Inputs, Multiple
Outputs (“sequence-to-
sequence”: with time

delay)

Fig. 2 (Wolf et al., 2020:
https://arxiv.org/pdf/1910.03771.pdf)

(“single input” ~= single, flat vector, e.g., BoW of a document)
(single output ~= one prediction only)

https://arxiv.org/pdf/1910.03771.pdf

Five Broad Categories of Neural Networks

Single Input, Single Output

Single Input, Multiple
Outputs

Multiple Inputs, Single
Output

Multiple Inputs, Multiple
Outputs (“sequence

prediction”: no time delay)

Multiple Inputs, Multiple
Outputs (“sequence-to-
sequence”: with time

delay)

Fig. 2 (Wolf et al., 2020:
https://arxiv.org/pdf/1910.03771.pdf)

(“single input” ~= single, flat vector, e.g., BoW of a document)
(single output ~= one prediction only)

https://arxiv.org/pdf/1910.03771.pdf

Sequence (Multiple) Input, Single
Label Output

x0

h0

Recurrent: Sequence input, one output

Document classification
Action recognition in video (high-level)

h1 h2

y

x1 x2

Sequence (Multiple) Input, Single
Label Output

x0

h0

Recurrent: Sequence input, one output

Document classification
Action recognition in video (high-level)

h1 h2

y

x1 x2

Think of this as generalizing using maxent
models to build discriminatively trained

classifiers
𝑝 𝑦	 𝑥) = exp(𝜃!"	,lat_feats 𝑥)

è
𝑝 𝑦	 𝑥) = exp(𝜃!"	recurrent_feats 𝑥)

Example: RTE (many options)
s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
z: The Bulls basketball team is
based in Chicago.

p(|)ENTAILED

s0

hs,0 hs,N

y

sN

…

z0

hz,0 hz,M

zM

…

(form a single sequence of the
premise & hypothesis)

Example: RTE (many options)
s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
z: The Bulls basketball team is
based in Chicago.

p(|)ENTAILED

s0

hs,0 hs,N

y

sN

…

z0

hz,0 hz,M

zM

…

(form two sequences: one of the
premise & one of the hypothesis)

Reminder!

GLUE
https://gluebenchmark.com/

https://super.gluebenchmark.com/

Many (but not all) of these
tasks fall into the

Sequence Input, Label Output

https://gluebenchmark.com/
https://super.gluebenchmark.com/

Sequence Input, Sequence Output
(“sequence prediction”: no time delay)

x0

h0

Recursive: Sequence input, Sequence
output

Part of speech tagging
Named entity recognition

h1 h2

x1 x2

y0 y1 y2

Example 1: Part of Speech Tagging

British Left Waffles on Falkland Islands

Noun Verb Noun Prep Noun Noun

x0

h0

y0

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Task: Predict a part-of-speech tag
for each word in a provided

sentence

Example 1: Part of Speech Tagging

British Left Waffles on Falkland Islands

Noun Verb Noun Prep Noun Noun

x0

h0

y0

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Example 2: Named Entity Recognition

British Left Waffles on Falkland Islands

ORG ORG Other Other LOC LOC

x0

h0

y0

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Task: Predict a named entity tag
for each word in a provided

sentence

What are Named
Entities?

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of
predefined categories of interest

Person names
Organizations (companies, government organisations,

committees, etc)
Locations (cities, countries, rivers, etc)
Date and time expressions
Measures (percent, money, weight etc), email addresses, Web

addresses, street addresses, etc.
Domain-specific: names of drugs, medical conditions, names

of ships, bibliographic references etc.

Cunningham and Bontcheva (2003, RANLP Tutorial)

Reminder!

Example 2: Named Entity Recognition

British Left Waffles on Falkland Islands

ORG ORG Other Other LOC LOC

x0

h0

y0

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

Task: Predict a named entity tag
for each word in a provided

sentence

Example: Named Entity Recognition

British Left Waffles on Falkland Islands

ORG ORG Other Other LOC LOC

x0

h0

y0

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

How to evaluate sequence prediction w/o
no time delay (*ForTokenClassification)

• Treat it as a standard prediction task
– e.g., Accuracy, Precision, Recall, F1

• Most common: metric per token prediction
– For every token, did you make the correct

prediction?
• Less common but still helpful: metric per

sequence
– For every sequence, was the entire sequence

correct?

Sequence Input, Sequence Output
(“sequence-to-sequence”: time delay)

x0

h0

Recursive: Sequence input,
Sequence output (time delay)

Machine translation
Sequential description

Summarization

h1 h2

x1 x2

o0

y0

o1

y1

o2

y2

o3

y3

Example: Translation

Translate English (observed) into French:

The cat is on the chair.

Le chat est sur la chaise.

variable # of
input words

variable # of
output words

Example: Translation
Translate English (observed) into French:

The cat is on the chair.

Le chat est sur la chaise.

x0

h0 h2

x2

o0

y0

o3

y3

… …

RNN Output:
Visual Storytelling

CNN CNN CNN CNN CNN

GRU GRU GRU GRU GRU

Encode

Decode

GRUs GRUs …

The
family got
together

for a
cookout

They had a lot
of delicious

food.

The family got together for a cookout. They had a lot of delicious food.
The dog was happy to be there. They had a great time on the beach.

They even had a swim in the water.
Huang et al. (2016)

Human Reference

The family has gathered around the dinner table to share a meal
together. They all pitched in to help cook the seafood to perfection.

Afterwards they took the family dog to the beach to get some exercise.
The waves were cool and refreshing! The dog had so much fun in the
water. One family member decided to get a better view of the waves!

Teacher Forcing vs. No Teacher Forcing

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy dog

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

blackThe

loudlyBOS verymeowedfluffy catgrayThe

loudly EOSverymeowedfluffy catgrayThe

word prob.

The .2

gray .01

blue .001

fluffy .0005

wet .0005

… …

word prob.

black .2

gray .12

blue .001

fluffy .0005

wet .0005

… …

word prob.

fluffy .2

gray .01

blue .001

bald .0005

wet .0005

… …

word prob.

dog .2

cat .19

blue .001

fluffy .0005

wet .0005

… …

word prob

meowed .3

purred .2

hissed .1

fluffy .001

wet .001

… …

word prob.

very .2

lots .1

softly . 1

fluffy .0005

wet .0005

… …

word prob

loudly .2

softly .01

quiet .001

fluffy .001

wet .001

… …

word prob.

EOS .3

and .1

blue .001

fluffy .0005

wet .0005

… …

log .2 log .12 log .2 log .19 log .3 log .2 log .2 log .2

(then negate, average)

Teacher Forcing vs. No Teacher Forcing

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy dog

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

blackThe

loudlyBOS verymeowedfluffy dogblackThe

loudly EOSverymeowedfluffy catgrayThe

word prob.

The .2

gray .01

blue .001

fluffy .0005

wet .0005

… …

word prob.

black .2

gray .12

blue .001

fluffy .0005

wet .0005

… …

word prob.

fluffy .2

gray .01

blue .001

bald .0005

wet .0005

… …

word prob.

dog .2

cat .19

blue .001

fluffy .0005

wet .0005

… …

word prob

meowed .3

purred .2

hissed .1

fluffy .001

wet .001

… …

word prob.

very .2

lots .1

softly . 1

fluffy .0005

wet .0005

… …

word prob

loudly .2

softly .01

quiet .001

fluffy .001

wet .001

… …

word prob.

EOS .3

and .1

blue .001

fluffy .0005

wet .0005

… …

log .2 log .12 log .2 log .19 log .3 log .2 log .2 log .2

(then negate, average)

How to evaluate sequence prediction with
no time delay (*ForConditionalGeneration)

Human Eval
• Get responses from your

model
• Develop a questionnaire
• Show responses to human

evaluators, getting
“goodness”
– Goodness can be: fluency,

coherence, appropriateness,
etc. Very task dependent.

• Single response vs.
comparison

Automatic Eval

Human Eval: Single Response vs.
Comparison

Single Response Example
For a translation task:
Original: The cat is on the
chair.
Proposed translation: Le chat
est sur la chaise.

Question: Is this a “good”
translation?

Human Eval: Single Response vs.
Comparison

Single Response Example
For a translation task:
Original: The cat is on the
chair.
Proposed translation: Le chat
est sur la chaise.

Question: Is this a “good”
translation?

Comparison
For a translation task:
Original: The cat is on the
chair.
Proposed translation 1: Le chat
est sur la chaise.
Proposed translation 2: Le chat
sont sur la chaise.

Question: Which translation do
you “prefer?”

How to evaluate sequence prediction with
no time delay (*ForConditionalGeneration)

Human Eval
• Get responses from your model
• Develop a questionnaire
• Show responses to human

evaluators, getting “goodness”
– Goodness can be: fluency,

coherence, appropriateness, etc.
Very task dependent.

• Single response vs. comparison

Automatic Eval
• “Accuracy”-based

– Perplexity (maybe but can overfit;
not always favored)

– Word error rate
• “Precision”-based

– BLEU (word n-gram overlap)
• “Recall”-based

– ROUGE (word n-gram overlap)
• “F1”-based

– METEOR (but only unigram)
• Embedding based

– BERTScore (ICLR 2020;
https://openreview.net/pdf?id=Ske
HuCVFDr)

Huggingface evaluate library:
https://huggingface.co/docs/evaluate/index

https://openreview.net/pdf?id=SkeHuCVFDr
https://openreview.net/pdf?id=SkeHuCVFDr
https://huggingface.co/docs/evaluate/index

A note on {BLEU, ROUGE}

• Terminology
– “Hypotheses”: predictions
– “References”: targets / gold labels

• Just as there are macro and micro {precision,
recall}, we have similar notions here
– “corpus” {BLEU, ROUGE} à micro
– “sentence” {BLEU, ROUGE} à macro

Key Highlights (1/3)

• While there are a
number of different
types of networks,
it’s helpful to think of
them as encoding
(learning to featurize)
the input, and then
making an
appropriate
prediction (“decode”)

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay); also called “encoder-

decoder”)

ML/NLP Framework for
Prediction

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Evaluation
Function

score

Evaluation
Function

Reminder
(from deck

4)!

Helpful ML Terminology
Recap (3)

Learning:
 the process of adjusting the model’s weights to
learn to make good predictions.

Inference / Prediction / Decoding / Classification:
 the process of using a model’s existing weights
to make (hopefully!) good predictions

Reminder
(from deck

3)!

A Couple Notes on “Encoder-Decoder”
Models

• Many people use the
term “encoder-
decoder” to describe
the “sequence-to-
sequence with time
delay” model type.
But…

• “Encoder-decoder”
terminology is quite
broad

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)

Key Highlights (2/3)
• While there are a number

of different types of
networks, it’s helpful to
think of them as
encoding (learning to
featurize) the input, and
then making an
appropriate prediction
(“decode”)

• This encoding is driven by
learning what is effective
for language modeling

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)

Key Highlights (3/3)
• While there are a number

of different types of
networks, it’s helpful to
think of them as encoding
(learning to featurize) the
input, and then making an
appropriate prediction
(“decode”)

• This encoding is driven by
learning what is effective
for language modeling

• This decoding can be
“prediction” or “language
modeling”

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)

Some Consequences of these Key Highlights

• While there are a number
of different types of
networks, it’s helpful to
think of them as encoding
(learning to featurize) the
input, and then making an
appropriate prediction
(“decode”)

• This encoding is driven by
learning what is effective
for language modeling

• This decoding can be
“prediction” or “language
modeling”

Encoding: use a modeling structure
that is effective. This could be:
• a bag-of-words style, or
• an auto-regressive (left-to-right)

encoder, or
• a bi-directional / auto-encoding

encoder

Decoding: an auto-regressive (left-to-
right) structure, e.g., process one item,
then another, then another

Encoder vs.
Decoder

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

Encoding: use a modeling
structure that is effective. This
could be:
• a bag-of-words style, or
• an auto-regressive (left-to-

right) encoder, or
• a bi-directional / auto-

encoding encoder

Decoding: an auto-regressive
(left-to-right) structure, e.g.,
process one item, then another,
then another

https://arxiv.org/pdf/1910.03771.pdf

Outline

Transformer Language Models as General
Language Encoders

The Attention Mechanism

Two Well-Known (Recent) Instances of
Learning from Language Models

GPT2 [Radford et al., 2018] BERT [Devlin et al., 2019 NAACL)

GPT-2 & BERT (and others) In Practice

• Use pytorch code
à The huggingface transformers package is very
popular
 Some hooks for tensorflow code

• Read the documentation!
– (but it may be dense): open a REPL/Colab

notebook and play around!

GPT-2 & BERT (and others) In Practice

• Use pytorch code
à The huggingface transformers package is very
popular
 Some hooks for tensorflow code

• Read the documentation!
– (but it may be dense): open a REPL/Colab notebook

and play around!
• Exception: GPT-3, GPT-4
– Model not publicly downloadable, must access

through a completely separate API
– Quota-based

GPT-2 Take-Away

Language models can provide an effective way of
learning embeddings that are useful for downstream

tasks

• Auto-regressive model that uses a transformer cell

𝑝 𝑤!…𝑤" =%
#

𝑝 𝑤# 𝑤!, … , 𝑤#$!)

https://openai.com/blog/gpt-2-1-5b-release/
https://github.com/openai/gpt-2

GPT-2 Model & Representation

x0

h0 h1 hN

x1 xN

y0 y1 yN

BOS British Islands

British Left [CLS]

…
Computed
w/
transformer
cells

BERT Take-Aways

1. Demonstration of bidirectional transformer
for language understanding

2. Clean separation of “pre-training” and “fine-
tuning” tasks

3. Clear demonstration that language model
“pre-training” can yield useful embeddings

Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce
effective embeddings through
“general” training objectives that
are end-task agnostic

Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce
effective embeddings through
“general” training objectives that
are end-task agnostic

1. Next-sentence prediction
[NSP]

2. Masked Language Modeling
[MLM]

Pre-training: NSP
• Given two sentences 𝑠) and
𝑠*, predict whether 𝑠*
follows 𝑠) in “natural” text

Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce
effective embeddings through
“general” training objectives that
are end-task agnostic

1. Next-sentence prediction
[NSP]

2. Masked Language Modeling
[MLM]

Pre-training: MLM
• Given a sentence 𝑠 = 𝑤)…𝑤+,

mask out (remove) a word 𝑤,
and predict what that word
should be

“The cat chased the mouse” è
“The cat [MASK] the mouse”

𝑝 𝑤	 The	cat MASK the	mouse)

Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce
effective embeddings through
“general” training objectives that
are end-task agnostic

1. Next-sentence prediction
[NSP]

2. Masked Language Modeling
[MLM]

Fig. 1

Pretraining vs. Fine-tuning

Pre-training
Learning an encoder to produce
effective embeddings through
“general” training objectives that
are end-task agnostic

1. Next-sentence prediction
[NSP]

2. Masked Language Modeling
[MLM]

Fine-Tuning
Learning task-specific
decoders using the
embeddings produced from
the pre-training, e.g.,

• RTE
• Question-answering
• <Your task here>

Pretraining vs. Fine-tuning

Fine-Tuning
Learning task-specific
decoders using the
embeddings produced from
the pre-training, e.g.,

• RTE
• Question-answering
• <Your task here>

Fig. 1

Pre-training then Fine-tuning

Fig. 1

BERT Representation

1. A special [CLS] token should precede the
entire input to BERT

2. Every sentence should be followed by a
special [SEP] token

3. The input must be tokenized in a special way
4. Segment & position embeddings must be

provided

BERT Representation

x1

h1 h2 hN+1

x2 xN+1

y1 y2 yN+1

British Left [SEP]

…

British Left [SEP]

x0

h0

y0

[CLS]

[CLS]

BERT Representation

x1

h1 h2 hN+1

x2 xN+1

y1 y2 yN+1

British Left [SEP]

…

British Left [SEP]

x0

h0

y0

[CLS]

[CLS]

1. A special [CLS] token should
precede the entire input to BERT

BERT Representation

x1

h1 h2 hN+1

x2 xN+1

y1 y2 yN+1

British Left [SEP]

…

British Left [SEP]

x0

h0

y0

[CLS]

[CLS]

2. Every sentence should be
followed by a special [SEP] token

BERT
Representation

(Even More)

Fig. 2

BERT Representation (Even More)

Fig. 2

BERT Representation (Even More)

Fig. 2

1. A special [CLS] token should
precede the entire input to BERT

BERT Representation (Even More)

Fig. 2

2. Every sentence should be followed
by a special [SEP] token

BERT Representation (Even More)

Fig. 2

3. The input must be tokenized in a
special way

BERT Representation (Even More)

Fig. 2

4. Segment & position embeddings
must be provided

BERT
Representation

(Even More)

Fig. 2

Transformer Language Model
 Take-Aways

1. Clean separation of “pre-training” and “fine-
tuning” tasks

2. Clear demonstration that language model
“pre-training” can yield useful embeddings

BERTFor<X>

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

https://arxiv.org/pdf/1910.03771.pdf

BERTFor<X>

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

Both SequenceClassification and TokenClassification
need some form of a classifier.

Q: How do we do
(compute, represent)

that?

https://arxiv.org/pdf/1910.03771.pdf

BERTFor<X>

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

Both SequenceClassification and TokenClassification
need some form of a classifier.

Q: How do we do
(compute, represent)

that?

A: Linear layer (+ cross-
entropy loss, and

conceptually softmax)

https://arxiv.org/pdf/1910.03771.pdf

BERTForSequenceClassification

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

Both SequenceClassification and TokenClassification
need some form of a classifier.

Q: How do we do
(compute, represent)

that?

A: Linear layer (+ cross-
entropy loss, and

conceptually softmax)

y

W

https://arxiv.org/pdf/1910.03771.pdf

BERTForTokenClassification

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

Both SequenceClassification and TokenClassification
need some form of a classifier.

Q: How do we do
(compute, represent)

that?

A: Linear layer (+ cross-
entropy loss, and

conceptually softmax)

y0

W

y0

W

y0

W

y0

W

(single linear
layer, re-used

across the
tokens)

https://arxiv.org/pdf/1910.03771.pdf

Encoder vs.
Decoder

Fig. 2 (Wolf et al., 2020: https://arxiv.org/pdf/1910.03771.pdf)

Encoding: use a modeling
structure that is effective. This
could be:
• a bag-of-words style, or
• an auto-regressive (left-to-

right) encoder, or
• a bi-directional / auto-

encoding encoder

Decoding: an auto-regressive
(left-to-right) structure, e.g.,
process one item, then another,
then another

https://arxiv.org/pdf/1910.03771.pdf

Outline

Transformer Language Models as General
Language Encoders

The Attention Mechanism

Effective, but challenges remain

• Sequence Input,
Label Output (w/
time delay)

• Sequence Input,
Sequence Output
(w/o time delay)

• Sequence Input,
Sequence Output
(w/ time delay)

Core effective idea:
Use the basic recurrent

(autoregressive) structure to
capture longer-range dependencies
that enable us to map from Input to

Output

Challenges:
• Key, salient portions of the Input

can become “buried”

• Knowing what to pay attention to
is difficult

Attention

A mechanism for signaling where in the input to
focus (“attend to”) when producing some

output

Each attention mechanism results in a
probability distribution over the input

There are many ways of computing this

Attention results in learning how to
form a “good” linear combination

e.g., how to do a weighted average
across a number of items

Example: Translation

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

Idea: generating the
first word would be
easier if we could
look back to the

input... but which
word do we want to

focus on?

Example: Translation

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

Idea: generating the
first word would be
easier if we could
look back to the

input... but which
word do we want to

focus on?

(Very high
confidence in “The”
would probably help

produce “Le”)

Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

Idea: generating the
first word would be
easier if we could
look back to the

input... but which
word do we want to

focus on?

Attention: a
learnable way of

knowing what words
to look back to

Attention

1. For a specific input 𝑥#, attention computes a
distribution 𝛼 over K possible values 𝑧!, 𝑧%, … , 𝑧&

2.

3.

Attention

1. For a specific input 𝑥#, attention computes a
distribution 𝛼 over K possible values 𝑧!, 𝑧%, … , 𝑧&

2. That distribution 𝛼 is then used to linearly
combine those K values together into a new
representation

3.

Attention

1. For a specific input 𝑥#, attention computes a
distribution 𝛼 over K possible values 𝑧!, 𝑧%, … , 𝑧&

2. That distribution 𝛼 is then used to linearly
combine those K values together into a new
representation

3. That representation is then used as features for
classification (or input to another layer)

Attention

1. For a specific input 𝑥#, attention computes a
distribution 𝛼 over K possible values (𝑧!, 𝑧%, … , 𝑧&)
– Often a form like

𝛼(𝑥7)8 = softmax(sim(𝑥7 , 𝑧8))
2. That distribution 𝛼 is then used to linearly

combine those K values together into a new
representation

3. That representation is then used as features for
classification (or input to another layer)

Attention
1. For a specific input 𝑥7, attention computes a distribution 𝛼

over K possible values (𝑧9, 𝑧:, … , 𝑧;)
– Often a form like

𝛼(𝑥,)- = softmax(sim(𝑥,, 𝑧-))
2. That distribution 𝛼 is then used to linearly combine those K

values together into a new representation
– Often a form like

𝑢, = ?
-.)

/

𝛼-𝑧-

3. That representation is then used as features for classification
(or input to another layer)

Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

For a specific input 𝑜!, attention
computes a distribution 𝛼 over
(N+1) possible values
ℎ!, ℎ", … , ℎ#

𝛼(𝑜!)$ = softmax(sim(𝑜!, ℎ$))

Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

For a specific input 𝑜!, attention
computes a distribution 𝛼 over
(N+1) possible values
ℎ!, ℎ", … , ℎ#

𝛼(𝑜!)$ = softmax(sim(𝑜!, ℎ$))

𝛼 𝑜! =

ℎ!: 0.3
ℎ": 0.15
ℎ%: 0.07
…

ℎ#: 0.07

0.070.15
0.3

Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

For a specific input 𝑜!, attention
computes a distribution 𝛼 over
(N+1) possible values
ℎ!, ℎ", … , ℎ#

Use 𝛼 to linearly combine those
(N+1) values together into a new
representation

𝑢& = D
$'!

#("

𝛼$ℎ$

𝛼 𝑜! =

ℎ!: 0.3
ℎ": 0.15
ℎ%: 0.07
…

ℎ#: 0.07

0.070.15
0.3

Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

For a specific input 𝑜!, attention
computes a distribution 𝛼 over
(N+1) possible values
ℎ!, ℎ", … , ℎ#

Use 𝛼 to linearly combine those
(N+1) values together into a new
representation

𝑢& = D
$'!

#("

𝛼$ℎ$

𝛼 𝑜! =

ℎ!: 0.3
ℎ": 0.15
ℎ%: 0.07
…

ℎ#: 0.07

𝑢& = 𝛼! ℎ!	vec + ⋯+ 𝛼# ℎ#	vec

0.070.15
0.3

Solution: Attention

The cat is on the chair.

Le

x0

h0 hN

xN

o0

y0

…

For a specific input 𝑜!, attention
computes a distribution 𝛼 over
(N+1) possible values
ℎ!, ℎ", … , ℎ#

Use 𝛼 to linearly combine those
(N+1) values together into a new
representation

Use 𝑢! as features for
classification

𝛼 𝑜! =

ℎ!: 0.3
ℎ": 0.15
ℎ%: 0.07
…

ℎ#: 0.07

𝑢& = 𝛼! ℎ!	vec + ⋯+ 𝛼# ℎ#	vec

0.070.15
0.3

u0

Vaswani et al.
(NeurIPS, 2017)

“Attention Is All You Need”: Take-Aways

1. Formulation of attention as a query-key-value
triple

2. “Transformer” model that uses self-attention

3. Demonstration that the transformer can
outperform sequence-to-sequence recurrent
models (but at a large computational cost!)

“Attention Is All You Need” Description
of Attention

“An attention function can be described as
mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and

output are all vectors.
The output is computed as a weighted sum of

the values,
where the weight assigned to each value is

computed by a compatibility function of the
query with the corresponding key.”

these query, key, value, and output
items will be task dependent

“Attention Is All You Need” Description
of Attention

“An attention function can be described as
mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and

output are all vectors.
The output is computed as a weighted sum of

the values,
where the weight assigned to each value is

computed by a compatibility function of the
query with the corresponding key.”

“Attention Is All You Need” Description
of Attention

“An attention function can be described as
mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and

output are all vectors.
The output is computed as a weighted sum of

the values,
where the weight assigned to each value is

computed by a compatibility function of the
query with the corresponding key.”

“Attention Is All You Need” Description
of Attention

“An attention function can be
described as mapping a query and

a set of key-value pairs to an
output, where the query, keys,

values, and output are all vectors.

The output is computed as a
weighted sum of the values,

where the weight assigned to each
value is computed by a

compatibility function of the query
with the corresponding key.”

The cat is on the chair.

[Le] [chat] … [fromage] …

chat

[The] [cat] … [bandage] …

Le ◊

query: input & current translation

key: English words

value: French words

output: next translated word

“Attention Is All You Need” Description
of Attention

“An attention function can be
described as mapping a query and

a set of key-value pairs to an
output, where the query, keys,

values, and output are all vectors.

The output is computed as a
weighted sum of the values,

where the weight assigned to each
value is computed by a

compatibility function of the query
with the corresponding key.”

The cat is on the chair.

[Le] [chat] … [fromage] …

chat

[The] [cat] … [bandage] …

Le ◊

“Attention Is All You Need” Description
of Attention

“An attention function can be
described as mapping a query and

a set of key-value pairs to an
output, where the query, keys,

values, and output are all vectors.

The output is computed as a
weighted sum of the values,

where the weight assigned to each
value is computed by a

compatibility function of the query
with the corresponding key.”

The cat is on the chair.

[Le] [chat] … [fromage] …

chat

[The] [cat] … [bandage] …

Le ◊

“Attention Is All You Need” Description
of Attention (advanced)

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾(𝑉

similarity
function (𝑑$ is

embedding dim.)

“Attention Is All You Need” Description
of Attention (advanced)

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾(𝑉

similarity
function (𝑑$ is

embedding dim.)

attending distribution
𝛼 from before

“Attention Is All You Need” Description
of Attention (advanced)

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾(𝑉

similarity
function (𝑑$ is

embedding dim.)

attending distribution
𝛼 from before

linear combination over outputs

Multi-head Attention

Multi-head Attention

Attention 𝑄, 𝐾, 𝑉 = softmax
1
𝑑'
𝑄𝐾(𝑉

Multi-head Attention

Attention 𝑄𝑊7
< , 𝐾𝑊7

; , 𝑉𝑊7
=

= softmax
1
𝑑8
(𝑄𝑊7

<)(𝐾𝑊7
;) 𝑉𝑊7

=

Outline

Transformer Language Models as General
Language Encoders

The Attention Mechanism

Key Highlights
• While there are a number of

different types of networks, it’s
helpful to think of them as
encoding (learning to featurize)
the input, and then making an
appropriate prediction (“decode”)

• This encoding is driven by learning
what is effective for language
modeling

• This decoding can be “prediction”
or “language modeling”

• Attention is the building block
behind many of these approaches

• Attention learns how to perform
linear combinations of
embeddings

Single Input, Single Output

Single Input, Multiple Outputs

Multiple Inputs, Single Output

Multiple Inputs, Multiple Outputs (“sequence
prediction”: no time delay)

Multiple Inputs, Multiple Outputs (“sequence-to-
sequence”: with time delay)

