
(Generative) Language Modeling

Frank Ferraro – ferraro@umbc.edu
CMSC 473/673

Some slides adapted from 3SLP, Jason Eisner

mailto:ferraro@umbc.edu

[…text..]pθ()

Goal of Language Modeling

Learn a probabilistic model of text

Accomplished through observing text and updating
model parameters to make text more likely

Two Perspectives: Prediction vs.
Generation

Prediction
 Given observed word tokens 𝑤!…𝑤"#!,
create a classifier 𝑝	to predict the next word 𝑤"

𝑝 𝑤" = 𝑣	 𝑤!…𝑤"#!)

Generation

Two Perspectives: Prediction vs.
Generation

Prediction
 Given observed word tokens 𝑤!…𝑤"#!,
create a classifier 𝑝	to predict the next word 𝑤"

𝑝 𝑤" = 𝑣	 𝑤!…𝑤"#!), e.g.,
𝑝 𝑤" = meowed	 The, 0luffy, cat)

Generation

Two Perspectives: Prediction vs.
Generation

Prediction
 Given observed word tokens 𝑤!…𝑤"#!,
create a classifier 𝑝	to predict the next word 𝑤"

𝑝 𝑤" = 𝑣	 𝑤!…𝑤"#!), e.g.,
𝑝 𝑤" = meowed	 The, 0luffy, cat)

Generation
 Develop a probabilistic model 𝑝 to
explain/score the word sequence 𝑤!…𝑤"

𝑝(𝑤!…𝑤"), e.g.,
𝑝(The, 0luffy, cat,meowed)

[…text..]pθ()

Design Question 1: What Part of
Language Do We Estimate?

Is […text..] a
• Full document?
• Sequence of sentences?
• Sequence of words?
• Sequence of characters?

A: It’s task-
dependent!

[…typo-text..]pθ()

Design Question 2: How do we
estimate robustly?

What if […text..] has a typo?

[…synonymous-text..]pθ()

Design Question 3: How do we
generalize?

What if […text..] has a word (or character
or…) we’ve never seen before?

Key Idea: Probability Chain Rule

𝑝 𝑥!, 𝑥$, … , 𝑥% =

𝑝 𝑥! 𝑝 𝑥$	 𝑥!)𝑝 𝑥&	 𝑥!, 𝑥$)⋯𝑝 𝑥% 𝑥!, … , 𝑥%#!

Key Idea: Probability Chain Rule

𝑝 𝑥!, 𝑥$, … , 𝑥% =
𝑝 𝑥! 𝑝 𝑥$	 𝑥!)𝑝 𝑥&	 𝑥!, 𝑥$)⋯𝑝 𝑥% 𝑥!, … , 𝑥%#! =

:
'

%

𝑝 𝑥' 𝑥!, … , 𝑥'#!)

Language modeling is about how to
estimate each of these factors in
{great, good, sufficient, …} ways

Problem: Develop a Probabilistic Email
Classifier

Input: an email (all text)
Output (Google categories):
 Primary, Social, Forums, Spam

argmax(𝑝 label	𝑌 = 𝑦	 email	𝑋)

Approach #1: Discriminatively trained
Approach #2: Using Bayes rule

Classify Using Bayes Rule

𝑝 label	𝑌	 email	𝑋) ∝ 𝑝 𝑋	 𝑌) ∗ 𝑝(𝑌)

Classify Using Bayes Rule

Q: Why is p(Y | X) what
we want to model?

𝑝 label	𝑌	 email	𝑋) ∝ 𝑝 𝑋	 𝑌) ∗ 𝑝(𝑌)

Classify Using Bayes Rule

Won’t you
please

donate?
𝑝) ∝ 𝑝)𝑝()Primary Primary Primary

Won’t you
please

donate?

𝑝 label	𝑌	 email	𝑋) ∝ 𝑝 𝑋	 𝑌) ∗ 𝑝(𝑌)

A Closer Look at 𝑝()

This is the prior probability of each class

Answers the question: without knowing
anything specific about a document, how likely
is each class?

Primary

A Closer Look at 𝑝()

This is the prior probability of each class

Answers the question: without knowing
anything specific about a document, how likely
is each class?

Primary

Q: What’s an easy way to
estimate it?

A Closer Look at 𝑝)

This is a class specific language model

Primary
Won’t you

please
donate?

A Closer Look at 𝑝)

This is a class specific language model

𝑝) is different from

𝑝) is different from

𝑝) …

Primary
Won’t you

please
donate?

Primary

Won’t you
please

donate?

Social
Won’t you

please
donate?

Forums
Won’t you

please
donate?

A Closer Look at 𝑝)

This is a class specific language model

To learn 𝑝):

For each class Class:
Get a bunch of Class documents 𝐷!"#$$
Learn a new language model 𝑝!"#$$ on just 𝐷!"#$$

Primary
Won’t you

please
donate?

Class
Won’t you

please
donate?

Language Models & Smoothing

• Maximum likelihood (MLE): simple counting
• Other count-based models
– Laplace smoothing, add- λ
– Interpolation models
– Discounted backoff
– Interpolated (modified) Kneser-Ney
– Good-Turing
– Witten-Bell

• Maxent n-gram models
• Neural n-gram models
• Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Super modern

“The Unreasonable Effectiveness of
Recurrent Neural Networks”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

“The Unreasonable Effectiveness of Character-
level Language Models”

(and why RNNs are still cool)
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Language Models & Smoothing

• Maximum likelihood (MLE): simple counting
• Other count-based models
– Laplace smoothing, add- λ
– Interpolation models
– Discounted backoff
– Interpolated (modified) Kneser-Ney
– Good-Turing
– Witten-Bell

• Maxent n-gram models
• Neural n-gram models
• Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Super modern

N-Grams

Maintaining an entire inventory over sentences
could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously)

N-Grams
Maintaining an entire joint inventory over

sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

N-Grams
Maintaining an entire joint inventory over

sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *

N-Grams
Maintaining an entire joint inventory over

sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice
of “furiously?”

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice
of “furiously?”

Remove history and contextual info

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of
“furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈
p(furiously | Colorless green ideas sleep)

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of
“furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈
p(furiously | ideas sleep)

N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep) *
p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
Fully proper distribution: Pad the right with a single <EOS> symbol

N-Gram Terminology

n Commonly
called

History Size
(Markov order) Example

1 unigram 0 p(furiously)

N-Gram Terminology

n Commonly
called

History Size
(Markov order) Example

1 unigram 0 p(furiously)
2 bigram 1 p(furiously | sleep)

N-Gram Terminology

n Commonly
called

History Size
(Markov order) Example

1 unigram 0 p(furiously)
2 bigram 1 p(furiously | sleep)

3 trigram
(3-gram) 2 p(furiously | ideas sleep)

N-Gram Terminology

n Commonly
called

History Size
(Markov order) Example

1 unigram 0 p(furiously)
2 bigram 1 p(furiously | sleep)

3 trigram
(3-gram) 2 p(furiously | ideas sleep)

4 4-gram 3 p(furiously | green ideas sleep)
n n-gram n-1 p(wi | wi-n+1 … wi-1)

N-Gram Probability

𝑝 𝑤E, 𝑤F, 𝑤G, ⋯ , 𝑤H =

3
IJE

H

𝑝 𝑤I 𝑤IKLME, ⋯ , 𝑤IKE)

Count-Based N-Grams (Unigrams)

𝑝 item ∝ 𝑐𝑜𝑢𝑛𝑡(item)

Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡(z)

Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z

=
𝑐𝑜𝑢𝑛𝑡 z

∑! 𝑐𝑜𝑢𝑛𝑡(v)

word type word type

word type

Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z

=
𝑐𝑜𝑢𝑛𝑡 z

𝑊

word type word type

number of tokens observed

Count-Based N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

film 2

got 1

a 2

great 1

opening 1

and 1

the 1

went 1

on 1

to 1

become 1

hit 1

. 1

Count-Based N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

film 2

got 1

a 2

great 1

opening 1

and 1

the 1

went 1

on 1

to 1

become 1

hit 1

. 1

Count-Based N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

1/16

film 2 1/8

got 1 1/16

a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

. 1 1/16

Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in
conditioning

order matters in
count

Count of the
sequence of items

“x y z”

Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in
conditioning

order matters in
count

count(x, y, z) ≠ count(x, z, y) ≠ count(y, x, z) ≠ …

Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡 x, y, z

=
𝑐𝑜𝑢𝑛𝑡 x, y, z

∑! 𝑐𝑜𝑢𝑛𝑡(x, y, v)

Context: x y Word (Type): z Raw Count Normalization Probability p(z | x y)

The film The 0

1

0/1

The film film 0 0/1

The film got 1 1/1

The film went 0 0/1

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

Count-Based N-Grams (Trigrams)
The film got a great opening and the film went on to become a hit .

Context: x y Word (Type): z Raw Count Normalization Probability: p(z | x y)

the film the 0

2

0/2

the film film 0 0/2

the film got 1 1/2

the film went 1 1/2

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

Count-Based N-Grams (Lowercased Trigrams)

the film got a great opening and the film went on to become a hit .

Implementation: EOS Padding

Create an end of sentence (“chunk”) token
<EOS>

Don’t estimate p(<BOS> | <EOS>)

Training & Evaluation:
1. Identify “chunks” that are relevant

(sentences, paragraphs, documents)
2. Append the <EOS> token to the end of

the chunk
3. Train or evaluate LM as normal

Implementation: Memory Issues

Let V = vocab size, W = number of observed n-
grams

Often, 𝑊 ≪ 𝑉

Dense count representation: 𝑂(𝑉!), but many entries
will be zero

Sparse count representation: 𝑂(𝑊)

Sometimes selective precomputation is helpful (e.g.,
normalizers)

Implementation: Unknown words

Create an unknown word token <UNK>

Training:
1. Create a fixed lexicon L of size V
2. Change any word not in L to <UNK>
3. Train LM as normal

Evaluation:
Use UNK probabilities for any word not in
training

A Closer Look at Count-based 𝑝)

This is a class specific language model

To learn 𝑝):

For each class Class:
Get a bunch of Class documents 𝐷!"#$$
Learn a new language model 𝑝!"#$$ on just 𝐷!"#$$

Primary
Won’t you

please
donate?

Class
Won’t you

please
donate?

Two Ways to Learn Class-specific
Count-based Language Models

1. Create different count
table(s) 𝑐)*+,,(…) for each
Class

e.g., record separate trigram
counts for Primary vs. Social
vs. Forums vs. Spam

Two Ways to Learn Class-specific
Count-based Language Models

1. Create different count table(s)
𝑐!"#$$(…) for each Class

e.g., record separate trigram counts
for Primary vs. Social vs. Forums vs.
Spam

OR

2. Add a dimension to your existing
tables 𝑐(Class, …)

e.g., record how often each trigram
occurs within Primary vs. Social vs.
Forums vs. Spam documents

Evaluating Language Models

What is “correct?”
What is working “well?”

Training Data Dev
Data

Test
Data

learn model parameters:
• acquire primary statistics
• learn feature weights

fine-tune any secondary
(hyper)parameters

perform final
evaluation

DO NOT TUNE ON THE TEST DATA

Evaluating Language Models

What is “correct?”
What is working “well?”

Extrinsic: Evaluate LM in downstream task
 Test an MT, ASR, etc. system and see which
LM does better
 Propagate & conflate errors

𝑝 label	𝑌	 doc	𝑋) ∝ 𝑝 𝑋	 𝑌) ∗ 𝑝(𝑌)

Evaluating Language Models

What is “correct?”
What is working “well?”

Extrinsic: Evaluate LM in downstream task
 Test an MT, ASR, etc. system and see which LM
does better
 Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task
 Use perplexity (from information theory)

Perplexity: Average “Surprisal”

Lower is better : lower perplexity è less surprised

Less certain è
More surprised è
Higher perplexity

More certain è
Less surprised è
Lower perplexity

word type

p(
w

or
d

ty
pe

 |
 c

on
te

xt
)

word type

p(
w

or
d

ty
pe

 |
 c

on
te

xt
)

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(avg	xent)

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

e.g., n-gram history
(n-1 items)

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

≥ 0, ≤ 1: higher

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

≥ 0, ≤ 1: higher

≤ 0: higher

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

≥ 0, lower

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

≥ 0, lower

base must be
the same

Perplexity

Lower is better : lower perplexity è less surprised

perplexity = exp(#!
-
	∑'.!- log 𝑝 𝑤' 	 ℎ'))

 = " ∏'.!
!

/ 0#	 2#)

weighted
geometric

average

How to Compute Average Perplexity
• If you have a list of the probabilities for each observed n-gram

“token:”

numpy.exp(-numpy.mean(numpy.log(probs_per_trigram_token)))

• If you have a list of observed n-gram “types” t and counts c,
and log-prob. function lp:

numpy.exp(-numpy.mean(c*lp(t) for (t, c) in ngram_types.items()))

• If you’re computing a cross-entropy loss function (e.g., in
Pytorch):

loss_fn = torch.nn.CrossEntropyLoss(reduction=‘mean’)
torch.exp(loss_fn(input_data))

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram)

<BOS> <BOS> The 1

<BOS> The film 1

The film , 0

film , a 0

, a hit 0

a hit ! 0

hit ! <EOS> 0

Perplexity ???

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram)

<BOS> <BOS> The 1

<BOS> The film 1

The film , 0

film , a 0

, a hit 0

a hit ! 0

hit ! <EOS> 0

Perplexity Infinity

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram) Smoothed
p(trigram)

<BOS> <BOS> The 1 2/17

<BOS> The film 1 2/17

The film , 0 1/17

film , a 0 1/16

, a hit 0 1/16

a hit ! 0 1/17

hit ! <EOS> 0 1/16

Perplexity Infinity ???

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram) Smoothed
p(trigram)

<BOS> <BOS> The 1 2/17

<BOS> The film 1 2/17

The film , 0 1/17

film , a 0 1/16

, a hit 0 1/16

a hit ! 0 1/17

hit ! <EOS> 0 1/16

Perplexity Infinity 13.59

0s Are Not Your (Language Model’s) Friend

0 probability à item is impossible
 0s annihilate: x*y*z*0 = 0

Language is creative:
 new words keep appearing
 existing words could appear in known contexts

How much do you trust your data?

𝑝 item ∝ 𝑐𝑜𝑢𝑛𝑡 item = 0 →
𝑝 item = 0

Language Models & Smoothing

• Maximum likelihood (MLE): simple counting
• Other count-based models
– Laplace smoothing, add- λ
– Interpolation models
– Discounted backoff
– Interpolated (modified) Kneser-Ney
– Good-Turing
– Witten-Bell

• Maxent n-gram models
• Neural n-gram models
• Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Super modern

Add-λ estimation

Other names: Laplace
smoothing, Lidstone

smoothing

Pretend we saw each
word λ more times

than we did

Add λ to all the
counts

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

Add-λ estimation

Other names: Laplace
smoothing, Lidstone

smoothing

Pretend we saw each
word λ more times

than we did

Add λ to all the
counts

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

=
𝑐𝑜𝑢𝑛𝑡 z + 𝜆

∑!(𝑐𝑜𝑢𝑛𝑡 v + 𝜆)

Add-λ estimation

Other names: Laplace
smoothing, Lidstone

smoothing

Pretend we saw each
word λ more times

than we did

Add λ to all the
counts

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

=
𝑐𝑜𝑢𝑛𝑡 z + 𝜆
𝑊 + 𝑉𝜆

tokens # types

Add-λ N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) Raw Count Norm Prob. Add-λ Count Add-λ Norm. Add-λ Prob.

The 1

16

1/16

film 2 1/8

got 1 1/16

a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

. 1 1/16

Add-1 N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) Raw Count Norm Prob. Add-1 Count Add-1 Norm. Add-1 Prob.

The 1

16

1/16 2

film 2 1/8 3

got 1 1/16 2

a 2 1/8 3

great 1 1/16 2

opening 1 1/16 2

and 1 1/16 2

the 1 1/16 2

went 1 1/16 2

on 1 1/16 2

to 1 1/16 2

become 1 1/16 2

hit 1 1/16 2

. 1 1/16 2

Add-1 N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) Raw Count Norm Prob. Add-1 Count Add-1 Norm. Add-1 Prob.

The 1

16

1/16 2

16 + 14*1 =
30

film 2 1/8 3

got 1 1/16 2

a 2 1/8 3

great 1 1/16 2

opening 1 1/16 2

and 1 1/16 2

the 1 1/16 2

went 1 1/16 2

on 1 1/16 2

to 1 1/16 2

become 1 1/16 2

hit 1 1/16 2

. 1 1/16 2

Add-1 N-Grams (Unigrams)
The film got a great opening and the film went on to become a hit .

Word (Type) Raw Count Norm Prob. Add-1 Count Add-1 Norm. Add-1 Prob.

The 1

16

1/16 2

16 + 14*1 =
30

=1/15

film 2 1/8 3 =1/10

got 1 1/16 2 =1/15

a 2 1/8 3 =1/10

great 1 1/16 2 =1/15

opening 1 1/16 2 =1/15

and 1 1/16 2 =1/15

the 1 1/16 2 =1/15

went 1 1/16 2 =1/15

on 1 1/16 2 =1/15

to 1 1/16 2 =1/15

become 1 1/16 2 =1/15

hit 1 1/16 2 =1/15

. 1 1/16 2 =1/15

Context: x y Word (Type): z Raw Count Add-1 count Norm. Probability p(z | x y)

The film The 0

The film film 0

The film got 1

The film went 0

The film OOV 0

The film EOS 0

…

a great great 0

a great opening 1

a great and 0

a great the 0

…

An Extended Trigram Example
The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS,
how many types (for

normalization)?

Context: x y Word (Type): z Raw Count Add-1 count Norm. Probability p(z | x y)

The film The 0

The film film 0

The film got 1

The film went 0

The film OOV 0

The film EOS 0

…

a great great 0

a great opening 1

a great and 0

a great the 0

…

An Extended Trigram Example
The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS,
how many types (for

normalization)?

A: 16
(why don’t we count BOS?)

Context: x y Word (Type): z Raw Count Add-1 count Norm. Probability p(z | x y)

The film The 0 1

17
(=1+16*1)

1/17

The film film 0 1 1/17
The film got 1 2 2/17
The film went 0 1 1/17

… …
The film OOV 0 1 1/17

The film EOS 0 1 1/17

…

a great great 0 1

17

1/17

a great opening 1 2 2/17

a great and 0 1 1/17

a great the 0 1 1/17

…

An Extended Trigram Example
The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS,
how many types (for

normalization)?

A: 16
(why don’t we count BOS?)

The film got a great opening and the film went on to become a hit .
Context: x y Word (Type): z Raw Count Add-1 count Norm. Probability p(z | x y)

The film The 0 1

17
(=1+16*1)

1/17

The film film 0 1 1/17
The film got 1 2 2/17
The film went 0 1 1/17

… …
The film OOV 0 1 1/17

The film EOS 0 1 1/17

…

a great great 0 1

17

1/17

a great opening 1 2 2/17

a great and 0 1 1/17

a great the 0 1 1/17

…

An Extended Trigram Example

Q: What is the perplexity for
the sentence

“The film , a hit !”

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram)

<BOS> <BOS> The 1

<BOS> The film 1

The film , 0

film , a 0

, a hit 0

a hit ! 0

hit ! <EOS> 0

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram)

<BOS> <BOS> The 1

<BOS> The film 1

The film , 0

film , a 0

, a hit 0

a hit ! 0

hit ! <EOS> 0

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram) UNK-ed trigrams

<BOS> <BOS> The 1 <BOS> <BOS> The

<BOS> The film 1 <BOS> The film

The film , 0 The film <UNK>

film , a 0 film <UNK> a

, a hit 0 <UNK> a hit

a hit ! 0 a hit <UNK>

hit ! <EOS> 0 hit <UNK> <EOS>

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram) UNK-ed trigrams Smoothed
p(trigram)

<BOS> <BOS> The 1 <BOS> <BOS> The 2/17

<BOS> The film 1 <BOS> The film 2/17

The film , 0 The film <UNK> 1/17

film , a 0 film <UNK> a 1/16

, a hit 0 <UNK> a hit 1/16

a hit ! 0 a hit <UNK> 1/17

hit ! <EOS> 0 hit <UNK> <EOS> 1/16

What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram) UNK-ed trigrams Smoothed
p(trigram)

<BOS> <BOS> The 1 <BOS> <BOS> The 2/17

<BOS> The film 1 <BOS> The film 2/17

The film , 0 The film <UNK> 1/17

film , a 0 film <UNK> a 1/16

, a hit 0 <UNK> a hit 1/16

a hit ! 0 a hit <UNK> 1/17

hit ! <EOS> 0 hit <UNK> <EOS> 1/16

Setting Hyperparameters

Use a development corpus

Choose λs to maximize the probability of dev data:
– Fix the N-gram probabilities (on the training data)

– Then search for λs that give largest probability to held-out set:

Training Data Dev
Data

Test
Data

Other Kinds of Smoothing

Interpolated (modified) Kneser-Ney
 Idea: How “productive” is a context?
 How many different word types v
appear in a context x, y

Good-Turing
 Partition words into classes of
occurrence
 Smooth class statistics
 Properties of classes are likely to
predict properties of other classes

Witten-Bell
 Idea: Every observed type was at
some point novel
 Give MLE prediction for novel type
occurring

• Maximum likelihood (MLE):
simple counting

• Laplace smoothing, add- λ
• Interpolation models
• Discounted backoff
• Interpolated (modified)

Kneser-Ney
• Good-Turing
• Witten-Bell

Advanced
topic

Language Models & Smoothing

• Maximum likelihood (MLE): simple counting
• Other count-based models
– Laplace smoothing, add- λ
– Interpolation models
– Discounted backoff
– Interpolated (modified) Kneser-Ney
– Good-Turing
– Witten-Bell

• Maxent n-gram models
• Neural n-gram models
• Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Super modern

Maxent Models as Featureful n-gram
Language Models

generatively trained:
learn to model (class-specific) language

𝑝 𝑥!	 𝑦, 𝑥!"#$%:!"%) =
maxent(𝑦, 𝑥!"#$%:!"%, 𝑥!)

p(Colorless green ideas sleep furiously | Label) =
p(Colorless | Label, <BOS>) * … * p(<EOS> | Label , furiously)

Model each n-gram term with
a maxent model

Language Model with Maxent n-grams

𝑝4 🗎 𝑦) =:
'.!

-

maxent(𝑦, 𝑥'#45!:'#!, 𝑥')

=2
&'(

)
exp(𝜃*$

+ 𝑓(𝑦, 𝑥&,-.(:&,())

∑*0 exp(𝜃*%
+
𝑓(𝑦, 𝑥&,-.(:&,())

n-gram

label

Iterate through all possible
output vocab types 𝑥′---just like
in count-based LMs

What Should These Features Do?

𝑝 𝑥' 	 𝑦, 𝑥'#"5!:'#!) = 	maxent(𝑦, 𝑥'#"5!:'#!, 𝑥'), e.g.,

𝑝 sleep	 𝑦, green, ideas) =	
maxent 𝑦, 𝑥'#$,'#! = green, ideas , 𝑥' = sleep

∝ exp(𝜃8#.,*99:
;𝑓(𝑦, 𝑥'#$,'#! = green, ideas))

(in-class discussion)

N-gram Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

N-gram Language Models

predict the next word

given some context…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤!"#, 𝑤!"$, 𝑤!"%, 𝑤!)

wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

N-gram Language Models

predict the next word

given some context…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤!"#, 𝑤!"$, 𝑤!"%, 𝑤!)

wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

Maxent Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃&! ⋅ 𝑓(𝑤!"#, 𝑤!"$, 𝑤!"%))

A Closer Look at Maxent 𝑝)

This is a class-based language model, but
incorporate the label into the features

To learn 𝑝):

Define features f that make use of the specific label
Class

Unlike count-based models, you don’t need
“separate” models here

Primary
Won’t you

please
donate?

Class
Won’t you

please
donate?

Language Models & Smoothing

• Maximum likelihood (MLE): simple counting
• Other count-based models
– Laplace smoothing, add- λ
– Interpolation models
– Discounted backoff
– Interpolated (modified) Kneser-Ney
– Good-Turing
– Witten-Bell

• Maxent n-gram models
• Neural n-gram models
• Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Super modern

Maxent Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃&! ⋅ 𝑓(𝑤!"#, 𝑤!"$, 𝑤!"%))

can we learn word-specific weights
(by type)?

Neural Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃𝒘𝒊 ⋅ 𝒇(𝑤!"#, 𝑤!"$, 𝑤!"%))

can we learn the feature function(s) for just
the context?

can we learn word-specific weights
(by type)?

Neural Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃&! ⋅ 𝒇(𝑤!"#, 𝑤!"$, 𝑤!"%))

create/use
“distributed
representations”… ei-3 ei-2 ei-1ew

Neural Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃&! ⋅ 𝒇(𝑤!"#, 𝑤!"$, 𝑤!"%))

create/use
“distributed
representations”… ei-3 ei-2 ei-1

combine these
representations… C = f

matrix-vector
product

ew

Neural Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃&! ⋅ 𝒇(𝑤!"#, 𝑤!"$, 𝑤!"%))

create/use
“distributed
representations”… ei-3 ei-2 ei-1

combine these
representations… C = f

matrix-vector
product

ew

θwi

Neural Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤! 	𝑤!"#, 𝑤!"$, 𝑤!"%) = softmax(𝜃&! ⋅ 𝒇(𝑤!"#, 𝑤!"$, 𝑤!"%))

create/use
“distributed
representations”… ei-3 ei-2 ei-1

combine these
representations… C = f

matrix-vector
product

ew

θwi

A Neural N-Gram Model

The gray fluffy cat meowed very loudly

loudly EOS
wi-2 wi-1 wi+1wi

verymeowedfluffy cat
wi-2 wi-1 wi+1wi

grayThe

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

grayThe

loudlyBOS verymeowedfluffy catgrayThe

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

grayThe

loudlyBOS verymeowedfluffy catgrayThe

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

grayThe

loudlyBOS verymeowedfluffy catgrayThe

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

grayThe

loudlyBOS verymeowedfluffy catgrayThe

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

grayThe

loudlyBOS verymeowedfluffy catgrayThe

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

grayThe

loudlyBOS verymeowedfluffy catgrayThe

“A Neural Probabilistic Language
Model,” Bengio et al. (2003)

Baselines

LM Name N-
gram Params. Test

Ppl.

Interpolation 3 --- 336

Kneser-Ney
backoff 3 --- 323

Kneser-Ney
backoff 5 --- 321

Class-based
backoff 3 500

classes 312

Class-based
backoff 5 500

classes 312

“A Neural Probabilistic Language
Model,” Bengio et al. (2003)

Baselines

LM Name N-
gram Params. Test

Ppl.

Interpolation 3 --- 336

Kneser-Ney
backoff 3 --- 323

Kneser-Ney
backoff 5 --- 321

Class-based
backoff 3 500

classes 312

Class-based
backoff 5 500

classes 312

NPLM

N-gram
Word
Vector
Dim.

Hidden
Dim.

Mix with
non-

neural
LM

Ppl.

5 60 50 No 268

5 60 50 Yes 257

5 30 100 No 276

5 30 100 Yes 252

“A Neural Probabilistic Language
Model,” Bengio et al. (2003)

Baselines

LM Name N-
gram Params. Test

Ppl.

Interpolation 3 --- 336

Kneser-Ney
backoff 3 --- 323

Kneser-Ney
backoff 5 --- 321

Class-based
backoff 3 500

classes 312

Class-based
backoff 5 500

classes 312

NPLM

N-gram
Word
Vector
Dim.

Hidden
Dim.

Mix with
non-

neural
LM

Ppl.

5 60 50 No 268

5 60 50 Yes 257

5 30 100 No 276

5 30 100 Yes 252

“we were not able to see signs of over- fitting (on the validation set), possibly
because we ran only 5 epochs (over 3 weeks using 40 CPUs)” (Sect. 4.2)

A Closer Look at Neural 𝑝)

This is a class-based language model, but incorporate
the label into the embedding representation

To learn 𝑝):

Define an embedding method that makes use of the
specific label Class

Unlike count-based models, you don’t need “separate”
models here

Primary
Won’t you

please
donate?

Class
Won’t you

please
donate?

Language Models & Smoothing

• Maximum likelihood (MLE): simple counting
• Other count-based models
– Laplace smoothing, add- λ
– Interpolation models
– Discounted backoff
– Interpolated (modified) Kneser-Ney
– Good-Turing
– Witten-Bell

• Maxent n-gram models
• Neural n-gram models
• Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Super modern

Recurrent/Autoregressive LMs

• coming next class…

