(Generative) Language Modeling

Frank Ferraro – <u>ferraro@umbc.edu</u> CMSC 473/673

Some slides adapted from 3SLP, Jason Eisner

Goal of Language Modeling

D_A [...text..]

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to make text more likely

Two Perspectives: Prediction vs. Generation

Prediction

Given observed word tokens $w_1 \dots w_{N-1}$, create a classifier p to predict the next word w_N $p(w_N = v | w_1 \dots w_{N-1})$

Generation

Two Perspectives: Prediction vs. Generation

Prediction

Given observed word tokens $w_1 \dots w_{N-1}$, create a classifier p to predict the next word w_N $p(w_N = v | w_1 \dots w_{N-1})$, e.g., $p(w_N = \text{meowed} | \text{The, fluffy, cat})$ Generation

Two Perspectives: Prediction vs. Generation

Prediction

Given observed word tokens $w_1 \dots w_{N-1}$, create a classifier p to predict the next word w_N $p(w_N = v | w_1 \dots w_{N-1})$, e.g., $p(w_N = \text{meowed} | \text{The, fluffy, cat})$

Generation

Develop a probabilistic model p to explain/score the word sequence $w_1 \dots w_N$ $p(w_1 \dots w_N)$, e.g., p(The, fluffy, cat, meowed)

Design Question 1: What Part of Language Do We Estimate?

D_A [...text..]

Is [...text..] a

- Full document?
- Sequence of sentences?
- Sequence of words?
- Sequence of characters?

A: It's taskdependent!

Design Question 2: How do we estimate robustly?

What if [...text..] has a typo?

Design Question 3: How do we generalize?

What if [...text..] has a word (or character or...) we've never seen before?

Key Idea: Probability Chain Rule

 $p(x_1, x_2, ..., x_S) =$

 $p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_S | x_1, \dots, x_{S-1})$

Key Idea: Probability Chain Rule

$$p(x_1, x_2, ..., x_S) =$$

$$p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_S | x_1, ..., x_{S-1}) =$$

$$\prod_{i} p(x_i | x_1, ..., x_{i-1})$$
Language modeling is about how to estimate each of these factors in {great, good, sufficient, ...} ways

Problem: Develop a Probabilistic Email Classifier

- Input: an email (all text)
- Output (Google categories):
 - Primary, Social, Forums, Spam
 - $\operatorname{argmax}_{y} p(\operatorname{label} Y = y | \operatorname{email} X)$
- Approach #1: Discriminatively trained
- **Approach #2: Using Bayes rule**

Classify Using Bayes Rule

$p(\text{label } Y \mid \text{email } X) \propto p(X \mid Y) * p(Y)$

Classify Using Bayes Rule

$p(\text{label } Y \mid \text{email } X) \propto p(X \mid Y) * p(Y)$

Q: Why is p(Y | X) what we want to model?

Classify Using Bayes Rule

$p(\text{label } Y \mid \text{email } X) \propto p(X \mid Y) * p(Y)$

A Closer Look at $p(\xi^{\text{Primary}})$

This is the **prior probability** of each *class*

Answers the question: without knowing anything specific about a document, how likely is each class?

A Closer Look at $p \in \mathbb{P}^{\text{rimary}}$

This is the **prior probability** of each *class*

Answers the question: without knowing anything specific about a document, how likely is each class?

Q: What's an easy way to estimate it?

This is a *class specific* language model

This is a *class specific* language model

This is a *class specific* language model

For each class Class:

Get a bunch of Class documents D_{Class} Learn a new language model p_{Class} on just D_{Class}

Language Models & Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
 - Laplace smoothing, add- λ
 - Interpolation models
 - Discounted backoff
 - Interpolated (modified) Kneser-Ney
 - Good-Turing
 - Witten-Bell
- Maxent n-gram models
- Neural n-gram models
- Recurrent/autoregressive NNs

"The Unreasonable Effectiveness of Recurrent Neural Networks" http://karpathy.github.io/2015/05/21/rnn-effectiveness/

"The Unreasonable Effectiveness of Characterlevel Language Models" (and why RNNs are still cool) http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Language Models & Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
 - Laplace smoothing, add- λ
 - Interpolation models
 - Discounted backoff
 - Interpolated (modified) Kneser-Ney
 - Good-Turing
 - Witten-Bell
- Maxent n-gram models
- Neural n-gram models
- Recurrent/autoregressive NNs

Maintaining an entire inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously)

Maintaining an entire *joint* inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) = p(Colorless) *

Maintaining an entire *joint* inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) =
 p(Colorless) *
 p(green | Colorless) *

Maintaining an entire *joint* inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) =
 p(Colorless) *
 p(green | Colorless) *
 p(ideas | Colorless green) *
 p(sleep | Colorless green ideas) *
 p(furiously | Colorless green ideas sleep)

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈ p(furiously | Colorless green ideas sleep)

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈ p(furiously | ideas sleep)

p(Colorless green ideas sleep furiously) =
 p(Colorless) *
 p(green | Colorless) *
 p(ideas | Colorless green) *
 p(sleep | Colorless green ideas) *
 p(furiously | Colorless green ideas sleep)

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | Colorless green ideas) * p(furiously | Colorless green ideas sleep)

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

p(Colorless green ideas sleep furiously) =
 p(Colorless | <BOS> <BOS>) *
 p(green | <BOS> Colorless) *
 p(ideas | Colorless green) *
 p(sleep | green ideas) *
 p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols

p(Colorless green ideas sleep furiously) =
 p(Colorless | <BOS> <BOS>) *
 p(green | <BOS> Colorless) *
 p(ideas | Colorless green) *
 p(sleep | green ideas) *
 p(furiously | ideas sleep) *
 p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols *Fully proper distribution*: Pad the right with a single <EOS> symbol

n		History Size (Markov order)	Example	
1	unigram	0	p(furiously)	

n	Commonly called	History Size (Markov order)	Example
1	unigram	0	p(furiously)
2	bigram	1	p(furiously sleep)

n	Commonly called	History Size (Markov order)	Example	
1	unigram	0	p(furiously)	
2	bigram	1	p(furiously sleep)	
3	trigram (3-gram)	2	p(furiously ideas sleep)	

n	Commonly called	History Size (Markov order)	Example
1	unigram	0	p(furiously)
2	bigram	1	p(furiously sleep)
3	trigram (3-gram)	2	p(furiously ideas sleep)
4	4-gram	3	p(furiously green ideas sleep)
n	n-gram	n-1	p(w _i w _{i-n+1} w _{i-1})

N-Gram Probability

$$p(w_1, w_2, w_3, \cdots, w_S) =$$

$$\prod_{i=1}^{S} p(w_i | w_{i-N+1}, \cdots, w_{i-1})$$

$p(\text{item}) \propto count(\text{item})$

$p(z) \propto count(z)$

The film got a great opening and the film went on to become a hit .

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
The	1		
film	2		
got	1		
а	2		
great	1		
opening	1		
and	1		
the	1		
went	1		
on	1		
to	1		
become	1		
hit	1		
	1		

The film got a great opening and the film went on to become a hit .

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
The	1		
film	2		
got	1		
а	2		
great	1		
opening	1		
and	1	10	
the	1	16	
went	1		
on	1		
to	1		
become	1		
hit	1		
	1		

The film got a great opening and the film went on to become a hit .

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
The	1		1/16
film	2		1/8
got	1		1/16
а	2		1/8
great	1		1/16
opening	1	16	1/16
and	1		1/16
the	1		1/16
went	1		1/16
on	1		1/16
to	1		1/16
become	1		1/16
hit	1		1/16
	1		1/16

 $count(x, y, z) \neq count(x, z, y) \neq count(y, x, z) \neq ...$

 $p(z|x,y) \propto count(x,y,z)$ count(x, y, z)

 $\sum_{v} count(x, y, v)$

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Normalization	Probability p(z x y)
The film	The	0		0/1
The film	film	0	1	0/1
The film	got	1	1	1/1
The film	went	0		0/1
a great	great	0		0/1
a great	opening	1	1	1/1
a great	and	0		0/1
a great	the	0		0/1

• • •

Count-Based N-Grams (Lowercased Trigrams)

the film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Normalization	Probability: p(z x y)		
the film	the	0	2	0/2		
the film	film	0		0/2		
the film	got	1		1/2		
the film	went	1		1/2		
a great	great	0		0/1		
a great	opening	1	1	1/1		
a great	and	0		0/1		
a great	the	0		0/1		
-						

Implementation: EOS Padding

Create an end of sentence ("chunk") token <EOS>

Don't estimate p(<BOS> | <EOS>)

Training & Evaluation:

- 1. Identify "chunks" that are relevant (sentences, paragraphs, documents)
- 2. Append the <EOS> token to the end of the chunk
- 3. Train or evaluate LM as normal

Implementation: Memory Issues

Let V = vocab size, W = number of **observed** ngrams

Often, $W \ll V$

Dense count representation: $O(V^n)$, but many entries will be zero

Sparse count representation: O(W)

Sometimes selective precomputation is helpful (e.g., normalizers)

Implementation: Unknown words

Create an unknown word token <UNK>

Training:

- 1. Create a fixed lexicon L of size V
- 2. Change any word not in L to <UNK>
- 3. Train LM as normal

Evaluation:

Use UNK probabilities for any word not in training

A Closer Look at Count-based $p(|p|_{donate?})$

This is a *class specific* language model

For each class Class:

Get a bunch of Class documents D_{Class} Learn a new language model p_{Class} on just D_{Class} Two Ways to Learn Class-specific Count-based Language Models

 Create different count table(s) c_{Class}(...) for each Class

e.g., record separate trigram counts for Primary vs. Social vs. Forums vs. Spam

Two Ways to Learn Class-specific Count-based Language Models

Create different count table(s)
 C_{Class}(...) for each Class

 e.g., record separate trigram counts
 for Primary vs. Social vs. Forums vs.
 Spam

OR

2. Add a dimension to your existing tables c(Class, ...)

e.g., record how often each trigram occurs within Primary vs. Social vs. Forums vs. Spam documents

Evaluating Language Models

What is "correct?" What is working "well?"

learn model parameters:

- acquire primary statistics
 - learn feature weights

perform final evaluation

DO NOT TUNE ON THE TEST DATA

Evaluating Language Models

What is "correct?" What is working "well?"

Extrinsic: Evaluate LM in downstream task Test an MT, ASR, etc. system and see which LM does better

Propagate & conflate errors

 $p(\text{label } Y \mid \text{doc } X) \propto p(X \mid Y) * p(Y)$

Evaluating Language Models

What is "correct?" What is working "well?"

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task Use perplexity (from information theory)

Perplexity: Average "Surprisal"

Lower is better : lower perplexity \rightarrow less surprised

Less certain → More surprised → Higher perplexity

More certain \rightarrow Less surprised \rightarrow Lower perplexity

Lower is better : lower perplexity \rightarrow less surprised

perplexity = exp(avg xent)

perplexity =
$$\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$$

perplexity =
$$\exp(\frac{-1}{M} \sum_{i=1}^{M} \log p(w_i \mid h_i))$$

 $\geq 0, \leq 1$: higher

perplexity =
$$\exp(\frac{-1}{M} \sum_{i=1}^{M} \log p(w_i \mid h_i))$$

 $\geq 0, \leq 1$: higher

perplexity =
$$\exp(\frac{-1}{M} \sum_{i=1}^{M} \log p(w_i \mid h_i))$$

= $\sqrt[M]{\prod_{i=1} \frac{1}{p(w_i \mid h_i)}}$
weighted
geometric
average

How to Compute Average Perplexity

 If you have a list of the probabilities for each observed n-gram "token:"

numpy.exp(-numpy.mean(numpy.log(probs_per_trigram_token)))

 If you have a list of observed n-gram "types" t and counts c, and log-prob. function lp:

numpy.exp(-numpy.mean(c*lp(t) for (t, c) in ngram_types.items()))

 If you're computing a cross-entropy loss function (e.g., in Pytorch):

Trigrams	MLE p(trigram)		
<bos> <bos> The</bos></bos>	1		
<bos> The film</bos>	1		
The film ,	0		
film , a	0		
, a hit	0		
a hit !	0		
hit ! <eos></eos>	0		
Perplexity	???		

Trigrams	MLE p(trigram)		
<bos> <bos> The</bos></bos>	1		
<bos> The film</bos>	1		
The film ,	0		
film , a	0		
, a hit	0		
a hit !	0		
hit ! <eos></eos>	0		
Perplexity	Infinity		

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	2/17
<bos> The film</bos>	1	2/17
The film ,	0	1/17
film , a	0	1/16
, a hit	0	1/16
a hit !	0	1/17
hit ! <eos></eos>	0	1/16
Perplexity	Infinity	???

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	2/17
<bos> The film</bos>	1	2/17
The film ,	0	1/17
film , a	0	1/16
, a hit	0	1/16
a hit !	0	1/17
hit ! <eos></eos>	0	1/16
Perplexity	Infinity	13.59

Os Are Not Your (Language Model's) Friend

$p(\text{item}) \propto count(\text{item}) = 0 \rightarrow p(\text{item}) = 0$

0 probability \rightarrow item is *impossible* 0s annihilate: $x^*y^*z^*0 = 0$

Language is creative: new words keep appearing existing words could appear in known contexts

How much do you trust your data?

Language Models & Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
 - Laplace smoothing, add- λ
 - Interpolation models
 - Discounted backoff
 - Interpolated (modified) Kneser-Ney
 - Good-Turing
 - Witten-Bell
- Maxent n-gram models
- Neural n-gram models
- Recurrent/autoregressive NNs

Add-λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

$$p(z) \propto count(z) + \lambda$$

Add λ to all the counts

Add-λ estimation

Other names: Laplace smoothing, Lidstone smoothing

 $p(z) \propto count(z) + \lambda$ $= \frac{count(z) + \lambda}{\sum_{v} (count(v) + \lambda)}$

Pretend we saw each word λ more times than we did

Add λ to all the counts

Add-λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

Add λ to all the counts

$$p(z) \propto count(z) + \lambda$$

$$= \frac{count(z) + \lambda}{W + V\lambda}$$

$$\# tokens \# types$$

Add-λ N-Grams (Unigrams)

Word (Type)	Raw Count	Norm	Prob.	Add-λ Count	Add-λ Norm.	Add-λ Prob.
The	1		1/16			
film	2		1/8			
got	1		1/16			
а	2		1/8			
great	1		1/16			
opening	1		1/16			
and	1	16	1/16			
the	1	10	1/16			
went	1		1/16			
on	1		1/16			
to	1		1/16			
become	1		1/16			
hit	1		1/16			
	1		1/16			

Add-1 N-Grams (Unigrams)

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1		1/16	2		
film	2		1/8	3		
got	1		1/16	2		
а	2		1/8	3		
great	1		1/16	2		
opening	1		1/16	2		
and	1	16	1/16	2		
the	1	10	1/16	2		
went	1		1/16	2		
on	1		1/16	2		
to	1		1/16	2		
become	1		1/16	2		
hit	1		1/16	2		
	1		1/16	2		

Add-1 N-Grams (Unigrams)

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1		1/16	2		
film	2		1/8	3		
got	1		1/16	2		
а	2		1/8	3		
great	1		1/16	2		
opening	1		1/16	2		
and	1	16	1/16	2	16 + 14*1 =	
the	1	10	1/16	2	30	
went	1		1/16	2		
on	1		1/16	2		
to	1		1/16	2		
become	1		1/16	2		
hit	1		1/16	2		
	1		1/16	2		

Add-1 N-Grams (Unigrams)

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1		1/16	2		=1/15
film	2		1/8	3		=1/10
got	1		1/16	2		=1/15
а	2		1/8	3		=1/10
great	1		1/16	2		=1/15
opening	1		1/16	2	16 + 14*1 = 30	=1/15
and	1	16	1/16	2		=1/15
the	1	16	1/16	2		=1/15
went	1		1/16	2		=1/15
on	1		1/16	2		=1/15
to	1		1/16	2		=1/15
become	1		1/16	2		=1/15
hit	1		1/16	2		=1/15
	1		1/16	2		=1/15

The film got a great opening and the film went on to become a hit.

Q: With OOV, EOS, and BOS, how many types (for normalization)?

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16 (why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16 (why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0	1		1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1	17 (=1+16*1)	1/17
				()	
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
a great	great	0	1		1/17
a great	opening	1	2	17	2/17
a great	and	0	1		1/17
a great	the	0	1		1/17

The film got a great opening and the film went on to become a hit.

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0	1		1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1	17 (=1+16*1)	1/17
				(,	
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
a great	great	0	1		1/17
a great	opening	1	2	17	2/17
a great	and	0	1		1/17
a great	the	0	1		1/17

Q: What is the perplexity for the sentence "The film , a hit !"

...

Trigrams	MLE p(trigram)
<bos> <bos> The</bos></bos>	1
<bos> The film</bos>	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <eos></eos>	0

Trigrams	MLE p(trigram)
<bos> <bos> The</bos></bos>	1
<bos> The film</bos>	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <eos></eos>	0

Trigrams	MLE p(trigram)	UNK-ed trigrams
<bos> <bos> The</bos></bos>	1	<bos> <bos> The</bos></bos>
<bos> The film</bos>	1	<bos> The film</bos>
The film ,	0	The film <unk></unk>
film , a	0	film <unk> a</unk>
, a hit	0	<unk> a hit</unk>
a hit !	0	a hit <unk></unk>
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>

Trigrams	MLE p(trigram)	UNK-ed trigrams	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	<bos> <bos> The</bos></bos>	2/17
<bos> The film</bos>	1	<bos> The film</bos>	2/17
The film ,	0	The film <unk></unk>	1/17
film , a	0	film <unk> a</unk>	1/16
, a hit	0	<unk> a hit</unk>	1/16
a hit !	0	a hit <unk></unk>	1/17
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>	1/16

Trigrams	MLE p(trigram)	UNK-ed trigrams	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	<bos> <bos> The</bos></bos>	2/17
<bos> The film</bos>	1	<bos> The film</bos>	2/17
The film ,	0	The film <unk></unk>	1/17
film , a	0	film <unk> a</unk>	1/16
, a hit	0	<unk> a hit</unk>	1/16
a hit !	0	a hit <unk></unk>	1/17
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>	1/16

Setting Hyperparameters Use a development corpus

Training Data

- Fix the N-gram probabilities (on the training data)

Data

Data

– Then search for λ s that give largest probability to held-out set:

Advanced topic

Other Kinds of Smoothing

- Maximum likelihood (MLE): simple counting
- Laplace smoothing, add- λ
- Interpolation models
- Discounted backoff
- Interpolated (modified)
 Kneser-Ney
- Good-Turing
- Witten-Bell

Interpolated (modified) Kneser-Ney

Idea: How "productive" is a context? How many different word *types v* appear in a context *x*, *y*

Good-Turing

Partition words into classes of occurrence Smooth class statistics Properties of classes are likely to predict properties of other classes

Witten-Bell

Idea: Every observed type was at some point novel Give MLE prediction for novel *type* occurring

Language Models & Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
 - Laplace smoothing, add λ

 - Discounted backoff

 - Good Turing
 - Witten-Bell
- Maxent n-gram models
- Neural n-gram models
- Recurrent/autoregressive NNs

Easy to implement Advanced/ out of scope Featureful LMs Feedforward I Ms

Super modern

Maxent Models as Featureful n-gram Language Models

p(Colorless green ideas sleep furiously | Label) = p(Colorless | Label, <BOS>) * ... * p(<EOS> | Label , furiously) Model each n-gram term with a maxent model $p(x_i \mid y, x_{i-N+1:i-1}) =$

$$maxent(y, x_{i-N+1:i-1}, x_i)$$

generatively trained: learn to model (class-specific) language

Language Model with Maxent n-grams

What Should These Features Do?

 $p(x_i | y, x_{i-N+1:i-1}) = maxent(y, x_{i-N+1:i-1}, x_i), e.g.,$

$$p(\text{sleep} | y, \text{green, ideas}) = \\ \max(y, x_{i-2,i-1} = (\text{green, ideas}), x_i = \text{sleep}) \\ \propto \exp(\theta_{x_i = \text{sleep}}^T f(y, x_{i-2,i-1} = (\text{green, ideas})))$$

(in-class discussion)

N-gram Language Models

given some context...

W _{i-3}	W _{i-2}	W _{i-1}	

N-gram Language Models

given some context...

compute beliefs about what is likely...

predict the next word

N-gram Language Models

given some context...

compute beliefs about what is likely...

predict the next word

Maxent Language Models

This is a *class-based* language model, but incorporate the label into the features

Define features f that make use of the specific label Class

Unlike count-based models, you don't *need* "separate" models here

Language Models & Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
 - Laplace smoothing, add λ
 - Interpolation models
 - Discounted backoff
 - Interpolated (modified) Kneser-Ney
 - Good Turing
- Maxent n-gram models
- Neural n-gram models
- Recurrent/autoregressive NNs

Easy to implement Advanced/ out of scope Featureful LMs Feedforward I Ms Super modern

Maxent Language Models

A Neural N-Gram Model

"A Neural Probabilistic Language Model," Bengio et al. (2003)

Baselines

LM Name	N- gram	Params.	Test Ppl.
Interpolation	3		336
Kneser-Ney backoff	3		323
Kneser-Ney backoff	5		321
Class-based backoff	3	500 classes	312
Class-based backoff	5	500 classes	312

"A Neural Probabilistic Language Model," Bengio et al. (2003)

Baselines

NPLM

LM Name	N- gram	Params.	Test Ppl.	
Interpolation	3		336	
Kneser-Ney backoff	3		323	
Kneser-Ney backoff	5		321	
Class-based backoff	3	500 classes	312	
Class-based backoff	5	500 classes	312	

N-gram	Word Vector Dim.	Hidden Dim.	Mix with non- neural LM	Ppl.
5	60	50	No	268
5	60	50	Yes	257
5	30	100	No	276
5	30	100	Yes	252

"A Neural Probabilistic Language Model," Bengio et al. (2003)

Baselines

NPLM

	LM Name	N-	Params.	Test				_					
	Interpolation	gram 3		Ppl. 336	⁸⁶ N-gram	N-gram	N-gram	N-gram	N-gram	Word Vector	Hidden	Mix with non-	Ppl.
	Kneser-Ney backoff	3		323		Dim.	Dim.	neural LM					
ĺ	Kneser-Ney		224		5	60	50	No	268				
	backoff	5	321	321		5	60	50	Yes	257			
	3	500	500 312		5	30	100	No	276				
l		5	classes	512		5	30	100	Yes	252			
	Class-based backoff	5	500 classes	312									

"we were not able to see signs of over-fitting (on the validation set), possibly because we ran only 5 epochs (over 3 weeks using 40 CPUs)" (Sect. 4.2) A Closer Look at Neural p(

This is a *class-based* language model, but incorporate the label into the *embedding representation*

Define an embedding method that makes use of the specific label Class

Unlike count-based models, you don't *need* "separate" models here

Language Models & Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
 - Laplace smoothing, add $-\lambda$

 - Discounted backoff
 - Interpolated (modified) Kneser-Ney
 - Good Turing
- Maxent n-gram models
- Neural n-gram models
- Recurrent/autoregressive NNs +

implement Advanced/ out of scope

Easy to

Featureful LMs

Feedforward LMs

Super modern

Recurrent/Autoregressive LMs

• coming next class...