(Generative) Language Modeling

Frank Ferraro - ferraro@umbc.edu
 CMSC 473/673

Goal of Language Modeling

$$
\mathrm{P}_{\theta}(\text { [...text..] })
$$

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to make text more likely

Two Perspectives: Prediction vs. Generation

Prediction

Given observed word tokens $w_{1} \ldots w_{N-1}$, create a classifier p to predict the next word w_{N}

$$
p\left(w_{N}=v \mid w_{1} \ldots w_{N-1}\right)
$$

Generation

Two Perspectives: Prediction vs.

Generation

Prediction

Given observed word tokens $w_{1} \ldots w_{N-1}$, create a classifier p to predict the next word w_{N}

$$
\begin{gathered}
p\left(w_{N}=v \mid w_{1} \ldots w_{N-1}\right), \text { e.g., } \\
p\left(w_{N}=\text { meowed |The, fluffy, cat }\right)
\end{gathered}
$$

Generation

Two Perspectives: Prediction vs.

Generation

Prediction

Given observed word tokens $w_{1} \ldots w_{N-1}$, create a classifier p to predict the next word w_{N}

$$
\begin{gathered}
p\left(w_{N}=v \mid w_{1} \ldots w_{N-1}\right), \text { e.g., } \\
p\left(w_{N}=\text { meowed } \mid \text { The, fluffy, cat }\right)
\end{gathered}
$$

Generation

Develop a probabilistic model p to explain/score the word sequence $w_{1} \ldots w_{N}$

$$
\begin{gathered}
p\left(w_{1} \ldots w_{N}\right) \text {, e.g., } \\
p \text { (The, fluffy, cat, meowed) }
\end{gathered}
$$

Design Question 1: What Part of Language Do We Estimate?

$\mathrm{P}_{\theta}($ [...text..] $)$

Is [...text..] a

- Full document?
- Sequence of sentences?
- Sequence of words?

A: It's task-
dependent!

- Sequence of characters?

Design Question 2: How do we estimate robustly?

$\mathrm{P}_{\theta}($ [...typo-text..] $)$

What if [...text..] has a typo?

Design Question 3: How do we generalize?

$\mathrm{P}_{\theta}($ [...synonymous-text..] $)$

What if [...text..] has a word (or character or...) we've never seen before?

Key Idea: Probability Chain Rule

$$
p\left(x_{1}, x_{2}, \ldots, x_{S}\right)=
$$

$p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{S} \mid x_{1}, \ldots, x_{S-1}\right)$

Key Idea: Probability Chain Rule

$$
\begin{gathered}
p\left(x_{1}, x_{2}, \ldots, x_{S}\right)= \\
p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{S} \mid x_{1}, \ldots, x_{S-1}\right)= \\
\left.\begin{array}{c}
S \\
\begin{array}{l}
\text { Language modeling is about how to } \\
\text { estimate each of these factors in } \\
\text { \{great, good, sufficient, ...\} ways }
\end{array} \\
\hline
\end{array} \right\rvert\,\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
\end{gathered}
$$

Problem: Develop a Probabilistic Email Classifier

Input: an email (all text)
Output (Google categories):
Primary, Social, Forums, Spam

$$
\operatorname{argmax}_{\mathrm{y}} p(\text { label } Y=y \mid \text { email } X)
$$

Approach \#1: Discriminatively trained
Approach \#2: Using Bayes rule

Classify Using Bayes Rule

$p($ label $Y \mid$ email $X) \propto p(X \mid Y) * p(Y)$

Classify Using Bayes Rule

$p($ label $Y \mid$ email $X) \propto p(X \mid Y) * p(Y)$

Q: Why is $p(Y \mid X)$ what we want to model?

Classify Using Bayes Rule

$p($ label $Y \mid$ email $X) \propto p(X \mid Y) * p(Y)$

A Closer Look at $p(\overbrace{}^{m})$

This is the prior probability of each class

Answers the question: without knowing anything specific about a document, how likely is each class?

A Closer Look at $p(\overbrace{}^{m})$

This is the prior probability of each class

Answers the question: without knowing anything specific about a document, how likely is each class?

Q: What's an easy way to estimate it?

This is a class specific language model

A Closer Look at $\left.p\binom{$ Wort tyou }{ donare } \right\rvert\, Emine

This is a class specific language model

This is a class specific language model
To learn $p\left(\begin{array}{c}\left.\text { Wont vou } \begin{array}{c}\text { pease } \\ \text { donate? }\end{array}\right)\end{array}\right.$
For each class Class:
Get a bunch of Class documents $D_{\text {Class }}$
Learn a new language model $p_{\text {Class }}$ on just $D_{\text {Class }}$

Language Models \& Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
- Laplace smoothing, add- λ

Easy to

- Interpolation models
- Discounted backoff
- Interpolated (modified) Kneser-Ney

Advanced/ out of

- Good-Turing
- Witten-Bell
- Maxent n-gram models

- Neural n-gram models

- Recurrent/autoregressive NNs

"The Unreasonable Effectiveness of Recurrent Neural Networks" http://karpathy.github.io/2015/05/21/rnn-effectiveness/
"The Unreasonable Effectiveness of Characterlevel Language Models"
(and why RNNs are still cool)
http://nbviewer.jupyter.org/gist/yoavg/d76121dfde2618422139

Language Models \& Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
- Laplace smoothing, add- λ

Easy to

- Interpolation models
- Discounted backoff
- Interpolated (modified) Kneser-Ney
- Good-Turing
- Witten-Bell
- Maxent n-gram models

- Neural n-gram models

- Recurrent/autoregressive NNs

N-Grams

Maintaining an entire inventory over sentences could be too much to ask

Store "smaller" pieces?
p(Colorless green ideas sleep furiously)

N-Grams

Maintaining an entire joint inventory over sentences could be too much to ask

Store "smaller" pieces?

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ $p($ Colorless) *

N-Grams

Maintaining an entire joint inventory over sentences could be too much to ask

Store "smaller" pieces?

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p(Colorless) *
p(green | Colorless) *

N-Grams

Maintaining an entire joint inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) = p (Colorless) *
p(green | Colorless) *
 p(sleep | Colorless green ideas) * p(furiously | Colorless green ideas sleep)

N-Grams

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

N-Grams

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

N-Grams

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info
p(furiously | Colorless green ideas sleep) \approx p(furiously | Colorless green-ideas sleep)

N-Grams

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

> p(furiously | Colorless green ideas sleep) \approx p(furiously | ideas sleep)

N-Grams

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p(Colorless) * p(green | Colorless) * p (ideas | Colorless green) * p(sleep | Colorless green ideas) * p(furiously | Colorless green ideas sleep)

N-Grams

$p($ Colorless green ideas sleep furiously $)=$ p(Colorless) * p(green | Colorless) * p (ideas | Colorless green) * p(sleep | Colorless green ideas) * p(furiously | Colorless green ideas sleep)

Trigrams

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p(Colorless) * p(green | Colorless) *
p (ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

Trigrams

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p(Colorless) * p(green | Colorless) *
p (ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

Trigrams

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p (Colorless | <BOS> <BOS>) * p(green | <BOS> Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols

Trigrams

$\mathrm{p}($ Colorless green ideas sleep furiously $)=$ p (Colorless | <BOS> <BOS>) * p(green | <BOS> Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep) * $\mathrm{p}(<E O S>$ | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols Fully proper distribution: Pad the right with a single <EOS> symbol

N-Gram Terminology

\mathbf{n}	Commonly called	History Size (Markov order)	Example
1	unigram	0	p (furiously)

N-Gram Terminology

\mathbf{n}	Commonly called	History Size (Markov order)	Example	
1	unigram	0	p (furiously)	
2	bigram	1	p (furiously \\| sleep)	

N-Gram Terminology

\mathbf{n}	Commonly called	History Size (Markov order)	Example
1	unigram	0	p (furiously)
2	bigram	1	p (furiously \| sleep)
3	trigram $(3-g r a m)$	2	p (furiously \| ideas sleep)

N-Gram Terminology

n	Commonly called	History Size (Markov order)	Example
1	unigram	0	p(furiously)
2	bigram	1	p(furiously \| sleep)
3	trigram (3-gram)	2	p(furiously \| ideas sleep)
4	4-gram	3	p(furiously \| green ideas sleep)
n	n-gram	n-1	$p\left(w_{i} \mid w_{i-n+1} \ldots w_{i-1}\right)$

N-Gram Probability

$$
\begin{gathered}
p\left(w_{1}, w_{2}, w_{3}, \cdots, w_{S}\right)= \\
\prod_{i=1}^{S} p\left(w_{i} \mid w_{i-N+1}, \cdots, w_{i-1}\right)
\end{gathered}
$$

Count-Based N-Grams (Unigrams)

$p($ item $) \propto \operatorname{count}($ item $)$

Count-Based N-Grams (Unigrams)

$p(\mathrm{z}) \propto \operatorname{count}(\mathrm{z})$

Count-Based N-Grams (Unigrams)

word type

Count-Based N-Grams (Unigrams)

number of tokens observed

Count-Based N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)	
The	1			
film	2			
got	1			
a	2			
great	1			
opening	1			
and	1			
the	1			
went	1			
on	1			
to	1			
become	1			
hit	1			

Count-Based N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)	
The	1			
film	2			
got	1			
a	2			
great	1			
opening	1			
and	1			
the	1			
went	1			
on	1			
to	1			
then	1			
become	1			
hit				

Count-Based N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
The	1		$1 / 16$
film	2		$1 / 8$
got	1		$1 / 16$
a	2		$1 / 8$
great	1		$1 / 16$
opening	1		16
and	1		$1 / 16$
the	1		$1 / 16$
went	1		$1 / 16$
on	1		$1 / 16$
to	1		
become	1		
hit	1		
m	1		

Count-Based N-Grams (Trigrams)

Count of the sequence of items
"x y z"

Count-Based N-Grams (Trigrams)

order matters in count

$p(\mathrm{z} \mid \mathrm{x}, \mathrm{y}) \propto \operatorname{count}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\operatorname{count}(x, y, z) \neq \operatorname{count}(x, z, y) \neq \operatorname{count}(y, x, z) \neq \ldots$

Count-Based N-Grams (Trigrams)

$p(\mathrm{z} \mid \mathrm{x}, \mathrm{y}) \propto \operatorname{count}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ $\operatorname{count}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$=\overline{\sum_{v} \operatorname{count}(\mathrm{x}, \mathrm{y}, \mathrm{v})}$

Count-Based N-Grams (Trigrams)

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Normalization	Probability p(z \| x y)
The film	The	0	1	0/1
The film	film	0		0/1
The film	got	1		1/1
The film	went	0		0/1
		...		
a great	great	0	1	0/1
a great	opening	1		1/1
a great	and	0		0/1
a great	the	0		0/1

Count-Based N-Grams (Lowercased Trigrams)

the film got a great opening and the film went on to become a hit .

Context: $\mathbf{x} \mathbf{y}$	Word (Type): \mathbf{z}	Raw Count	Normalization	Probability: p(z \|x y)
the film	the	0		$0 / 2$
the film	film	0		$0 / 2$
the film	got	1	2	$1 / 2$
the film	went	1		$1 / 2$
a great	great	\ldots		$0 / 1$
a great	opening	0		$1 / 1$
a great	and	1		$0 / 1$
a great	the	0		$0 / 1$

Implementation: EOS Padding

Create an end of sentence ("chunk") token <EOS>

Don't estimate $\mathrm{p}(<\mathrm{BOS}>\mid<\mathrm{EOS}>$)

Training \& Evaluation:

1. Identify "chunks" that are relevant (sentences, paragraphs, documents)
2. Append the <EOS> token to the end of the chunk
3. Train or evaluate LM as normal

Implementation: Memory Issues

Let $\mathrm{V}=$ vocab size, $\mathrm{W}=$ number of observed n grams

Often, $W \ll V$
Dense count representation: $O\left(V^{n}\right)$, but many entries will be zero

Sparse count representation: $O(W)$
Sometimes selective precomputation is helpful (e.g., normalizers)

Implementation: Unknown words

Create an unknown word token <UNK>

Training:

1. Create a fixed lexicon L of size V
2. Change any word not in L to <UNK>
3. Train LM as normal

Evaluation:

Use UNK probabilities for any word not in training

A Closer Look at Count-based p (

This is a class specific language model

For each class Class:
Get a bunch of Class documents $D_{\text {Class }}$
Learn a new language model $p_{\text {Class }}$ on just $D_{\text {Class }}$

Two Ways to Learn Class-specific Count-based Language Models

1. Create different count table(s) $c_{\text {Class }}(\ldots)$ for each
Class
e.g., record separate trigram counts for Primary vs. vs. Forums vs. Spam

Two Ways to Learn Class-specific Count-based Language Models

1. Create different count table(s)
$c_{\text {Class }}$ (...) for each Class
e.g., record separate trigram counts for Primary vs. Social vs. Forums vs. Spam

OR

2. Add a dimension to your existing tables c (Class, ...)
e.g., record how often each trigram occurs within Primary vs. Social vs.
Forums vs. Spam documents

Evaluating Language Models

What is "correct?" What is working "well?"

fine-tune any secondary
(hyper)parameters

learn model parameters:

- acquire primary statistics

Dev
 Data

- learn feature weights

Evaluating Language Models

What is "correct?" What is working "well?"

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which
LM does better
Propagate \& conflate errors
$p($ label $Y \mid \operatorname{doc} X) \propto p(X \mid Y) * p(Y)$

Evaluating Language Models

What is "correct?"
 What is working "well?"

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which LM does better

Propagate \& conflate errors

Intrinsic: Treat LM as its own downstream task Use perplexity (from information theory)

Perplexity: Average "Surprisal"

Lower is better : lower perplexity \rightarrow less surprised

$$
\begin{aligned}
& \overline{\boxed{x}} \\
& \text { y } \\
& \stackrel{0}{0} \\
& \frac{0}{0} \\
& 00 \\
& 0 \\
& 0.0 \\
& \frac{0}{0}
\end{aligned}
$$

Less certain \rightarrow
More surprised \rightarrow
Higher perplexity
More certain \rightarrow
Less surprised \rightarrow
Lower perplexity

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

perplexity $=\exp (\operatorname{avg} \operatorname{xent})$

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

e.g., n-gram history
(n-1 items)
perplexity $=\exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)$

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

$$
\text { perplexity }=\exp (\frac{-1}{M} \sum_{i=1}^{M} \log p \underbrace{\left.\log \mid h_{i}\right)}_{20,51: \text { ingher }})
$$

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

Perplexity

Lower is better : lower perplexity \rightarrow less surprised

perplexity $=\exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)$

$$
=\sqrt[M]{\prod_{i=1} \frac{1}{p\left(w_{i} \mid h_{i}\right)}}
$$

weighted
geometric
average

How to Compute Average Perplexity

- If you have a list of the probabilities for each observed n-gram "token:"

```
numpy.exp(-numpy.mean(numpy.log(probs_per_trigram_token)))
```

- If you have a list of observed n-gram "types" t and counts c, and log-prob. function Ip:

```
numpy.exp(-numpy.mean(c*lp(t) for (t, c) in ngram_types.items()))
```

- If you're computing a cross-entropy loss function (e.g., in Pytorch):

```
loss_fn = torch.nn.CrossEntropyLoss(reduction=`mean')
    torch.exp(loss_fn(input_data))
```


What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)
<BOS> <BOS> The	1
<BOS> The film	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <EOS>	0
Perplexity	$? ? ?$

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)
<BOS> <BOS> The	1
<BOS> The film	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <EOS>	0
Perplexity	Infinity

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<BOS> <BOS> The	1	$2 / 17$
<BOS> The film	1	$2 / 17$
The film ,	0	$1 / 17$
film , a	0	$1 / 16$
, a hit	0	$1 / 16$
a hit !	0	$1 / 17$
hit ! <EOS>	0	$1 / 16$
Perplexity	Infinity	$? ? ?$

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<BOS> <BOS> The	1	$2 / 17$
<BOS> The film	1	$2 / 17$
The film ,	0	$1 / 17$
film , a	0	$1 / 16$
, a hit	0	$1 / 16$
a hit !	0	$1 / 17$
hit ! <EOS>	0	$1 / 16$
Perplexity	Infinity	13.59

Os Are Not Your (Language Model's) Friend

$p($ item $) \propto \operatorname{count}($ item $)=0 \rightarrow$ $p($ item $)=0$
0 probability \rightarrow item is impossible
Os annihilate: $x^{*} y^{*} z^{*} 0=0$
Language is creative:
new words keep appearing
existing words could appear in known contexts
How much do you trust your data?

Language Models \& Smoothing

- Maximum likelihood (MLE): simple counting
- Other count-based models
- Laplace smoothing, add- $\boldsymbol{\lambda}$

Easy to

- Interpolation models
- Discounted backoff
- Interpolated (modified) Kneser-Ney
- Good-Turing
- Witten-Bell
- Maxent n-gram models

- Neural n-gram models

- Recurrent/autoregressive NNs

Add $-\lambda$ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each $\quad p(\mathrm{z}) \propto \operatorname{count}(\mathrm{z})+\lambda$ word λ more times
than we did

Add λ to all the counts

Add $-\lambda$ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

$$
\begin{aligned}
& p(\mathrm{z}) \propto \operatorname{count}(\mathrm{z})+\lambda \\
& =\frac{\operatorname{count}(\mathrm{z})+\lambda}{\sum_{v}(\operatorname{count}(\mathrm{v})+\lambda)}
\end{aligned}
$$

Add λ to all the counts

Add $-\lambda$ estimation

Other names: Laplace smoothing, Lidstone smoothing

$$
p(\mathrm{z}) \propto \operatorname{count}(\mathrm{z})+\lambda
$$

Pretend we saw each word λ more times
than we did

Add λ to all the counts

Add- λ N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add- λ Count	Add- λ Norm.	Add- λ Prob.
The	1	16	1/16			
film	2		1/8			
got	1		1/16			
a	2		1/8			
great	1		1/16			
opening	1		1/16			
and	1		1/16			
the	1		1/16			
went	1		1/16			
on	1		1/16			
to	1		1/16			
become	1		1/16			
hit	1		1/16			
.	1		1/16			

Add-1 N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1	16	1/16	2		
film	2		1/8	3		
got	1		1/16	2		
a	2		1/8	3		
great	1		1/16	2		
opening	1		1/16	2		
and	1		1/16	2		
the	1		1/16	2		
went	1		1/16	2		
on	1		1/16	2		
to	1		1/16	2		
become	1		1/16	2		
hit	1		1/16	2		
.	1		1/16	2		

Add-1 N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1	16	1/16	2	$\begin{gathered} 16+14 * 1= \\ 30 \end{gathered}$	
film	2		1/8	3		
got	1		1/16	2		
a	2		1/8	3		
great	1		1/16	2		
opening	1		1/16	2		
and	1		1/16	2		
the	1		1/16	2		
went	1		1/16	2		
on	1		1/16	2		
to	1		1/16	2		
become	1		1/16	2		
hit	1		1/16	2		
.	1		1/16	2		

Add-1 N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1	16	1/16	2	$\begin{gathered} 16+14 * 1= \\ 30 \end{gathered}$	$=1 / 15$
film	2		1/8	3		$=1 / 10$
got	1		1/16	2		$=1 / 15$
a	2		1/8	3		$=1 / 10$
great	1		1/16	2		$=1 / 15$
opening	1		1/16	2		$=1 / 15$
and	1		1/16	2		$=1 / 15$
the	1		1/16	2		$=1 / 15$
went	1		1/16	2		$=1 / 15$
on	1		1/16	2		$=1 / 15$
to	1		1/16	2		$=1 / 15$
become	1		1/16	2		$=1 / 15$
hit	1		1/16	2		$=1 / 15$
.	1		1/16	2		$=1 / 15$

An Extended Trigram Example

 The film got a great opening and the film went on to become a hit .Q: With OOV, EOS, and BOS, how many types (for
normalization)?

Context: $\mathbf{x} \mathbf{y}$	Word (Type): \mathbf{z}	Raw Count	Add-1 count	Norm.	Probability p(z \| x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
		0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

An Extended Trigram Example

 The film got a great opening and the film went on to become a hit .
Q: With OOV, EOS, and BOS, how many types (for normalization)?

Context: $\mathbf{x} \mathbf{y}$	Word (Type): \mathbf{z}	Raw Count	Add-1 count	Norm.	Probability p(z \|x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			

a great	great	0	
a great	opening	1	
a great	and	0	
a great	the	0	

An Extended Trigram Example

 The film got a great opening and the film went on to become a hit .
Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16
(why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z \| x y)
The film	The	0	1	$\begin{gathered} 17 \\ \left(=1+16^{*} 1\right) \end{gathered}$	1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1		1/17

The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
...					
a great	great	0	1	17	1/17
a great	opening	1	2		2/17
a great	and	0	1		1/17
a great	the	0	1		1/17

An Extended Trigram Example

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z \| x y
The film	The	0	1	$\begin{gathered} 17 \\ (=1+16 * 1) \end{gathered}$	1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1		1/17
...					...
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
...					
a great	great	0	1	17	1/17
a great	opening	1	2		2/17
a great	and	0	1		1/17
a great	the	0	1		1/17

Q: What is the perplexity for
the sentence
"The film , a hit !"

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)
<BOS> <BOS> The	1
<BOS> The film	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <EOS>	0

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)
<BOS> <BOS> The	1
<BOS> The film	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <EOS>	0

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)	UNK-ed trigrams
<BOS> <BOS> The	1	<BOS> <BOS> The
<BOS> The film	1	<BOS> The film
The film ,	0	The film <UNK>
film , a	0	film <UNK> a
, a hit	0	<UNK> a hit
a hit !	0	a hit <UNK>
hit ! <EOS>	0	hit <UNK> <EOS>

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)	UNK-ed trigrams	Smoothed p(trigram)
<BOS> <BOS> The	1	<BOS> <BOS> The	$2 / 17$
<BOS> The film	1	<BOS> The film	$2 / 17$
The film ,	0	The film <UNK>	$1 / 17$
film , a	0	film <UNK> a	$1 / 16$
, a hit	0	<UNK> a hit	$1 / 16$
a hit !	0	a hit <UNK>	$1 / 17$
hit ! <EOS>	0	hit <UNK> <EOS>	$1 / 16$

What are the tri-grams for "The film, a hit !"

Trigrams	MLE p(trigram)	UNK-ed trigrams	Smoothed p(trigram)
<BOS> <BOS> The	1	<BOS> <BOS> The	$2 / 17$
<BOS> The film	1	<BOS> The film	$2 / 17$
The film ,	0	The film <UNK>	$1 / 17$
film , a	0	film <UNK> a	$1 / 16$
, a hit	0	<UNK> a hit	$1 / 16$
a hit !	0	a hit <UNK>	$1 / 17$
hit ! <EOS>	0	hit <UNK> <EOS>	$1 / 16$

Setting Hyperparameters

Use a development corpus

Dev
 Data

Test
 Data

Choose λs to maximize the probability of dev data:

- Fix the N -gram probabilities (on the training data)
- Then search for λ s that give largest probability to held-out set:

Other Kinds of Smoothing

- Maximum likelihood (MLE): simple counting
- Laplace smoothing, add- λ
- Interpolation models
- Discounted backoff Interpolated (modified) Kneser-Ney Good-Turing Witten-Bell

Interpolated (modified) Kneser-Ney
Idea: How "productive" is a context?
How many different word types v appear in a context x, y

Good-Turing

Partition words into classes of
occurrence
Smooth class statistics
Properties of classes are likely to predict properties of other classes

Witten-Bell

Idea: Every observed type was at some point novel

Give MLE prediction for novel type occurring

Language Models \& Smoothing

- Maximum likelihood (MLE): simple counting
- Other count based models
-Laplacesmoothing, add λ
Easy to
- Interpolation models
-Discounted backoff
-Interpolated (modified) Kneser Ney
-Good Turing
-Witten Bell
- Maxent n-gram models
- Neural n-gram models

- Recurrent/autoregressive NNs

Maxent Models as Featureful n-gram Language Models

p (Colorless green ideas sleep furiously | Label) $=$ p (Colorless | Label, <BOS>) * ... *p(<EOS> | Label, furiously)

Model each n-gram term with a maxent model

$$
\begin{aligned}
& p\left(x_{i} \mid y, x_{i-N+1: i-1}\right)= \\
& \operatorname{maxent}\left(y, x_{i-N+1: i-1}, x_{i}\right)
\end{aligned}
$$

generatively trained:
learn to model (class-specific) language

Language Model with Maxent n-grams

$$
\begin{aligned}
& =\prod_{i=1}^{M} \frac{\exp \left(\theta_{x_{i}}^{T} f\left(y, x_{i-n+1: i-1}\right)\right)}{\sum_{\substack{x^{\prime} \\
\uparrow}} \exp \left(\theta_{x^{\prime}}{ }^{T} f\left(y, x_{i-n+1: i-1}\right)\right)}
\end{aligned}
$$

What Should These Features Do?

$$
p\left(x_{i} \mid y, x_{i-N+1: i-1}\right)=\operatorname{maxent}\left(y, x_{i-N+1: i-1}, x_{i}\right), \text { e.g., }
$$

$$
p(\text { sleep } \mid y, \text { green, ideas })=
$$

$\operatorname{maxent}\left(y, x_{i-2, i-1}=\right.$ (green, ideas), $x_{i}=$ sleep $)$
$\propto \exp \left(\theta_{x_{i}=\text { sleep }}{ }^{T} f\left(y, x_{i-2, i-1}=(\right.\right.$ green, ideas $\left.\left.)\right)\right)$
(in-class discussion)

N-gram Language Models

given some context...

N -gram Language Models

given some context...
compute beliefs about what is likely...

N -gram Language Models

given some context...
compute beliefs about what is likely...

Maxent Language Models

given some context...
compute beliefs about what is likely...

$$
p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot f\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)
$$

This is a class-based language model, but incorporate the label into the features

Define features f that make use of the specific label Class

Unlike count-based models, you don't need "separate" models here

Language Models \& Smoothing

- Maximum likelihood (MLE): simple counting
- Other count based models
-Laplacesmoothing, add λ
Easy to
- Interpolation models
-Discounted backoff
-Interpolated (modified) Kneser Ney
-Good Turing
-Witten Bell
- Maxent n-gram models
- Neural n-gram models

- Recurrent/autoregressive NNs

Maxent Language Models

given some context...
compute beliefs about what is likely...

$$
p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot f\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)
$$

can we learn word-specific weights (by type)?

Neural Language Models

given some context...
compute beliefs about what is likely...

can we learn the feature function(s) for just the context?
$p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot \quad\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)$
can we learn word-specific weights (by type)?

Neural Language Models

given some context...
create/use "distributed representations" ...

compute beliefs about what is likely...

$$
p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot f\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)
$$

Neural Language Models

given some context...
create/use
"distributed
representations"...
combine these
representations...

compute beliefs about what is likely...

$$
p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot f\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)
$$

Neural Language Models

given some context...
create/use
"distributed
representations" ...
combine these
representations...

compute beliefs about what is likely...

$$
p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot f\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)
$$

Neural Language Models

given some context...
create/use
"distributed
representations"...
combine these
representations...

compute beliefs about what is likely...

$$
p\left(w_{i} \mid w_{i-3}, w_{i-2}, w_{i-1}\right)=\operatorname{softmax}\left(\theta_{w_{i}} \cdot f\left(w_{i-3}, w_{i-2}, w_{i-1}\right)\right)
$$

A Neural N-Gram Model

The gray fluffy cat meowed very loudly

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

A Neural N-Gram Model ($\mathrm{N}=3$)

The gray fluffy cat meowed very loudly

A Neural N-Gram Model ($\mathrm{N}=3$)

The gray fluffy cat meowed very loudly

A Neural N-Gram Model ($\mathrm{N}=3$)

The gray fluffy cat meowed very loudly

A Neural N-Gram Model ($\mathrm{N}=3$)

The gray fluffy cat meowed very loudly

A Neural N-Gram Model (N=3)

The gray fluffy cat meowed very loudly

"A Neural Probabilistic Language Model," Bengio et al. (2003)

Baselines

LM Name	N- gram	Params.	Test Ppl.
Interpolation	3	---	336
Kneser-Ney backoff	3	---	323
Kneser-Ney backoff	5	---	321
Class-based backoff	3	500 classes	312
Class-based backoff	5	500 classes	312

"A Neural Probabilistic Language Model," Bengio et al. (2003)

Baselines

LM Name	N- gram	Params.	Test Ppl.
Interpolation	3	---	336
Kneser-Ney backoff	3	---	323
Kneser-Ney backoff	5	---	321
Class-based backoff	3	500 classes	312
Class-based backoff	5	500 classes	312

NPLM

N-gram	Word Vector Dim.	Hidden Dim.	Mix with non- neural LM	Ppl.
5	60	50	No	268
5	60	50	Yes	257
5	30	100	No	276
5	30	100	Yes	252

"A Neural Probabilistic Language Model," Bengio et al. (2003)

Baselines

LM Name	N- gram	Params.	Test Ppl.
Interpolation	3	---	336
Kneser-Ney backoff	3	---	323
Kneser-Ney backoff	5	---	321
Class-based backoff	3	500 classes	312
Class-based backoff	5	500 classes	312

NPLM

N-gram	Word Vector Dim.	Hidden Dim.	Mix with non- neural LM	Ppl.
5	60	50	No	268
5	60	50	Yes	257
5	30	100	No	276
5	30	100	Yes	252

"we were not able to see signs of over- fitting (on the validation set), possibly because we ran only 5 epochs (over 3 weeks using 40 CPUs)" (Sect. 4.2)

A Closer Look at Neural p (

This is a class-based language model, but incorporate the label into the embedding representation

To learn $p\left(\begin{array}{c}\substack{\text { Wont tool } \\ \text { ofese } \\ \text { donate? }}\end{array}\right\}$
Define an embedding method that makes use of the specific label Class

Unlike count-based models, you don't need "separate" models here

Language Models \& Smoothing

- Maximum likelihood (MLE): simple counting
- Other count based models
-Laplacesmoothing, add λ
Easy to
- Interpolation models
-Discounted backoff
-Interpolated (modified) Kneser Ney
-Good Turing
-Witten Bell
- Maxent n-gram models
- Neural n-gram models

- Recurrent/autoregressive NNs

Recurrent/Autoregressive LMs

- coming next class...

