
Distributed Representations

CMSC 473/673
Frank Ferraro

Some slides adapted from 3SLP

Outline

Continuous representations
Motivation
Key idea: represent blobs with vectors

Evaluation
Common continuous representation models

How have we represented words?

Each word is a distinct item
Bijection between the strings and unique integer ids:
"cat" --> 3, "kitten" --> 792 "dog" --> 17394

Are "cat" and "kitten" similar?

Equivalently: "One-hot" encoding
Represent each word type w with a vector the size of
the vocabulary
This vector has V-1 zero entries, and 1 non-zero (one)
entry

Recall from Deck 2:
Representing a Linguistic “Blob”

1. An array of sub-blobs
word à array of characters
sentence à array of words

2. Integer
representation/one-hot
encoding

3. Dense embedding

Let V = vocab size (# types)
1. Represent each word type

with a unique integer i,
where 0 ≤ 𝑖 < 𝑉

2. Or equivalently, …
– Assign each word to some

index i, where 0 ≤ 𝑖 < 𝑉
– Represent each word w with a

V-dimensional binary vector
𝑒!, where 𝑒!,# = 1 and 0
otherwise

↑This is what we’ve
(implicitly?) been using

Recall from Deck 2:
One-Hot Encoding Example

• Let our vocab be {a, cat, saw, mouse, happy}
• V = # types = 5
• Assign:

a 4

cat 2

saw 3

mouse 0

happy 1

𝑒!"# =

0
0
1
0
0

How do we
represent “cat?”

𝑒$"%%& =

0
1
0
0
0

How do we
represent
“happy?”

The Fragility of One-Hot Encodings
Case Study: Maxent Plagiarism Detector

Given two documents 𝑥!, 𝑥", predict y = 1
(plagiarized) or y = 0 (not plagiarized)

What is/are the:
• Method/steps for predicting?
• General formulation?
• Features?

Image: http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

There’s no way you’ll
catch me!

http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

Case Study: Maxent Plagiarism
Detector (Feature Example)

Given two documents 𝑥!, 𝑥", predict y = 1
(plagiarized) or y = 0 (not plagiarized)

• Intuition: documents are more likely to be
plagiarized if they have words in common
𝑓#$%&'())($&*(+,,./#0. 𝑥!, 𝑥" =	? ? ?

𝑓2*(+,	45,./#0. 𝑥!, 𝑥" =	? ? ?

Yes, but surely some
words will be in
common… these

features won’t catch
phrases!

Image: http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

Case Study: Maxent Plagiarism
Detector (Feature Example)

Given two documents 𝑥!, 𝑥", predict y = 1
(plagiarized) or y = 0 (not plagiarized)

• Intuition: documents are more likely to be
plagiarized if they have words in common
𝑓#$%&'())($&*(+,,./#0. 𝑥!, 𝑥" =	? ? ?

𝑓2*(+,	45,./#0. 𝑥!, 𝑥" =	? ? ?
𝑓2$0+#)	65,./#0. 𝑥!, 𝑥" =	? ? ?

No problem, I’ll just
change some words!

Image: http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

Case Study: Maxent Plagiarism
Detector (Feature Example)

Given two documents 𝑥!, 𝑥", predict y = 1
(plagiarized) or y = 0 (not plagiarized)

• Intuition: documents are more likely to be
plagiarized if they have words in common
𝑓#$%&'())($&*(+,,./#0. 𝑥!, 𝑥" =	? ? ?

𝑓2*(+,	45,./#0. 𝑥!, 𝑥" =	? ? ?
𝑓2$0+#)	65,./#0. 𝑥!, 𝑥" =	? ? ?

𝑓7%$($%)&(8&2*(+,	45,./#0. 𝑥!, 𝑥" =	? ? ?

Okay… but there are
too many possible
synonym n-grams!

Image: http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

Case Study: Maxent Plagiarism
Detector (Feature Example)

Given two documents 𝑥!, 𝑥", predict y = 1
(plagiarized) or y = 0 (not plagiarized)

• Intuition: documents are more likely to be
plagiarized if they have words in common
𝑓#$%&'())($&*(+,,./#0. 𝑥!, 𝑥" =	? ? ?

𝑓2*(+,	45,./#0. 𝑥!, 𝑥" =	? ? ?
𝑓2$0+#)	65,./#0. 𝑥!, 𝑥" =	? ? ?

𝑓7%$($%)&(8&2*(+,	45,./#0. 𝑥!, 𝑥" =	? ? ?
𝑓7%$($%)&(8&2$0+#)	65,./#0. 𝑥!, 𝑥" =	? ? ?

Hah, I win!

Image: http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

Plagiarism Detection: Word Similarity?

Recall from Deck 2:
Representing a Linguistic “Blob”

1. An array of sub-blobs
word à array of characters
sentence à array of words

2. Integer
representation/one-hot
encoding

3. Dense embedding

Let E be some embedding
size (often 100, 200, 300,
etc.)

Represent each word w with
an E-dimensional real-
valued vector 𝑒!

Remember:
A Dense Representation (E=2)

Distributional Representations

A dense, “low” dimensional vector representation

Distributional Representations

A dense, “low” dimensional vector representation

An E-dimensional
vector, often (but not
always) real-valued

Distributional Representations

A dense, “low” dimensional vector representation

An E-dimensional
vector, often (but not
always) real-valued

Up till ~2013: E could be
any size

2013-present: E << vocab

Distributional Representations

A dense, “low” dimensional vector representation

Many values
are not 0 (or at

least less
sparse than

one-hot)

An E-dimensional
vector, often (but not
always) real-valued

Up till ~2013: E could be
any size

2013-present: E << vocab

Distributional Representations

A dense, “low” dimensional vector representation

These are also called
• embeddings

• Continuous representations
• (word/sentence/…) vectors
• Vector-space models

Many values
are not 0 (or at

least less
sparse than

one-hot)

An E-dimensional
vector, often (but not
always) real-valued

Up till ~2013: E could be
any size

2013-present: E << vocab

Distributional models of meaning
= vector-space models of meaning

= vector semantics

Zellig Harris (1954):
“oculist and eye-doctor … occur in almost the same environments”
“If A and B have almost identical environments we say that they
are synonyms.”

Firth (1957):
“You shall know a word by the company it keeps!”

Continuous Meaning

The paper reflected the truth.

Continuous Meaning

The paper reflected the truth.

reflected

paper

truth

Continuous Meaning

The paper reflected the truth.

reflected

paper

truth

glean

hide

falsehood

where might these go
in this space?

Continuous Meaning

The paper reflected the truth.

reflected

paper

truth

glean

hide

One option
falsehood

Continuous Meaning

The paper reflected the truth.

reflected

paper

truth

glean

Another option

falsehood

hide

(Some) Properties of
Embeddings
Capture “like” (similar) words

18 CHAPTER 19 • VECTOR SEMANTICS

matrix is repeated between each one-hot input and the projection layer h. For the
case of C = 1, these two embeddings must be combined into the projection layer,
which is done by multiplying each one-hot context vector x by W to give us two
input vectors (let’s say vi and v j). We then average these vectors

h = W · 1
2C

X

�c jc, j 6=0

v(j) (19.31)

As with skip-grams, the the projection vector h is multiplied by the output matrix
W 0. The result o = W 0h is a 1⇥ |V | dimensional output vector giving a score for
each of the |V | words. In doing so, the element ok was computed by multiplying
h by the output embedding for word wk: ok = v0kh. Finally we normalize this score
vector, turning the score for each element ok into a probability by using the soft-max
function.

19.5 Properties of embeddings

We’ll discuss in Section 17.8 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 17.14 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 19.14 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 17.15 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property. We return in the next section to these
relational properties of embeddings and how they relate to meaning compositional-
ity: the way the meaning of a phrase is built up out of the meaning of the individual
vectors.

19.6 Compositionality in Vector Models of Meaning

To be written.

Mikolov et al. (2013)

https://media3.giphy.com/media/3orif0M8U1E7NfpFzq/200_s.gif

https://media3.giphy.com/media/3orif0M8U1E7NfpFzq/200_s.gif

(Some) Properties of
Embeddings

Capture “like” (similar) words

18 CHAPTER 19 • VECTOR SEMANTICS

matrix is repeated between each one-hot input and the projection layer h. For the
case of C = 1, these two embeddings must be combined into the projection layer,
which is done by multiplying each one-hot context vector x by W to give us two
input vectors (let’s say vi and v j). We then average these vectors

h = W · 1
2C

X

�c jc, j 6=0

v(j) (19.31)

As with skip-grams, the the projection vector h is multiplied by the output matrix
W 0. The result o = W 0h is a 1⇥ |V | dimensional output vector giving a score for
each of the |V | words. In doing so, the element ok was computed by multiplying
h by the output embedding for word wk: ok = v0kh. Finally we normalize this score
vector, turning the score for each element ok into a probability by using the soft-max
function.

19.5 Properties of embeddings

We’ll discuss in Section 17.8 how to evaluate the quality of different embeddings.
But it is also sometimes helpful to visualize them. Fig. 17.14 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 19.14 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 17.15 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property. We return in the next section to these
relational properties of embeddings and how they relate to meaning compositional-
ity: the way the meaning of a phrase is built up out of the meaning of the individual
vectors.

19.6 Compositionality in Vector Models of Meaning

To be written.

Capture relationships

Mikolov et al. (2013)

vector(‘king’) –
vector(‘man’) +

vector(‘woman’) ≈
	vector(‘queen’)

vector(‘Paris’) -
vector(‘France’) +
vector(‘Italy’) ≈
vector(‘Rome’)

https://media3.giphy.com/media/3orif0M8U1E7NfpFzq/200_s.gif

https://media3.giphy.com/media/3orif0M8U1E7NfpFzq/200_s.gif

Case Study: Maxent Plagiarism
Detector (Feature Example)

Given two documents 𝑥), 𝑥*, predict y = 1
(plagiarized) or y = 0 (not plagiarized)

• Intuition: documents are more likely to be
plagiarized if they have words in common

𝑓+,-./0110,.2034,67+8. 𝑥), 𝑥* =	? ? ?
𝑓:2034	<=,67+8. 𝑥), 𝑥* =	? ? ?
𝑓:,83+1	>=,67+8. 𝑥), 𝑥* =	? ? ?

𝑓?-,0,-1.0@.:2034	<=,67+8. 𝑥), 𝑥* =	? ? ?
𝑓?-,0,-1.0@.:,83+1	>=,67+8. 𝑥), 𝑥* =

get_similarity_with_embeddings()

L

Image: http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

http://3.bp.blogspot.com/_MWJDzvrnu7Y/TTcXpCWZerI/AAAAAAAAAWY/zxu1GwrIBz0/s1600/excellent-mr-burns.gif

Outline

Continuous representations
Motivation
Key idea: represent blobs with vectors

Evaluation
Common continuous representation models

“Embeddings” Did Not Begin
In This Century…

Hinton (1986): “Learning Distributed Representations
of Concepts”

Deerwester et al. (1990): “Indexing by Latent
Semantic Analysis”

Brown et al. (1992): “Class-based n-gram models of
natural language”

Key Ideas

1. Acquire basic contextual statistics (often
counts) for each word type v

Key Ideas

1. Acquire basic contextual statistics (often
counts) for each word type v

2. Extract a real-valued vector ev for each word
v from those statistics

Key Ideas

1. Acquire basic contextual statistics (often
counts) for each word type v

2. Extract a real-valued vector ev for each word
v from those statistics

3. Use the vectors to represent each word in
later tasks

Key Ideas: Generalizing to “blobs”

1. Acquire basic contextual statistics (often
counts) for each blob type v

2. Extract a real-valued vector ev for each blob v
from those statistics

3. Use the vectors to represent each blob in
later tasks

Outline

Continuous representations
Motivation
Key idea: represent blobs with vectors

Evaluation
Common continuous representation models

Evaluating Similarity
Extrinsic (task-based, end-to-end) Evaluation:

Question Answering
Spell Checking
Essay grading

Evaluating Similarity
Extrinsic (task-based, end-to-end) Evaluation:

Question Answering
Spell Checking
Essay grading

Intrinsic Evaluation:
Correlation between algorithm and human word
similarity ratings
Taking TOEFL multiple-choice vocabulary tests

Common Evaluation: Correlation
between similarity ratings

• Input: list of N word pairs { 𝑥), 𝑦) , … , (𝑥A, 𝑦A)}
– Each word pair (𝑥$, 𝑦$) has a human-provided

similarity score ℎ$
• Use your embeddings to compute an embedding

similarity score 𝑠B = sim(𝑥B , 𝑦B)
• Compute the correlation between human and

computed similarities
𝜌 = Corr(ℎ), … , ℎA , 𝑠), … , 𝑠A)

• Wordsim353: 353 noun pairs rated 0-10

Cosine: Measuring Similarity

Given 2 target words v and w how similar are their
vectors?

Dot product or inner product from linear algebra

High when two vectors have large values in same
dimensions, low for orthogonal vectors with zeros in
complementary distribution

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Cosine: Measuring Similarity

Given 2 target words v and w how similar are their
vectors?

Dot product or inner product from linear algebra

High when two vectors have large values in same dimensions,
low for orthogonal vectors with zeros in complementary
distribution

Correct for high magnitude vectors

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Cosine Similarity

Divide the dot product by the length of the two
vectors

This is the cosine of the angle between them

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

19.2 • SPARSE VECTOR MODELS: POSITIVE POINTWISE MUTUAL INFORMATION 7

computer data pinch result sugar
apricot 0 0 0.56 0 0.56

pineapple 0 0 0.56 0 0.56
digital 0.62 0 0 0 0

information 0 0.58 0 0.37 0
Figure 19.6 The Add-2 Laplace smoothed PPMI matrix from the add-2 smoothing counts
in Fig. 17.5.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot-product(~v,~w) =~v ·~w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (19.10)

Intuitively, the dot product acts as a similarity metric because it will tend to be
high just when the two vectors have large values in the same dimensions. Alterna-
tively, vectors that have zeros in different dimensions—orthogonal vectors— will be
very dissimilar, with a dot product of 0.

This raw dot-product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|~v| =

vuut
NX

i=1

v2
i (19.11)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. Raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are irregardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors ~a and
~b:

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (19.12)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(19.13)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector

Cosine as a similarity metric

-1: vectors point in opposite
directions
+1: vectors point in same
directions
0: vectors are orthogonal

Example: Word Similarity

Dim. 1 Dim. 2 Dim. 3

apricot 2 0 0

digital 0 1 2

information 1 6 1

cos 𝑥, 𝑦 =
∑! 𝑥!𝑦!

∑! 𝑥!" ∑! 𝑦!"

word types è

Example: Word Similarity

cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

cos 𝑥, 𝑦 =
∑! 𝑥!𝑦!

∑! 𝑥!" ∑! 𝑦!"

word types è

Dim. 1 Dim. 2 Dim. 3

apricot 2 0 0

digital 0 1 2

information 1 6 1

Example: Word Similarity

cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

cos 𝑥, 𝑦 =
∑! 𝑥!𝑦!

∑! 𝑥!" ∑! 𝑦!"

2 + 0 + 0
4 + 0 + 0 1 + 36 + 1

= 0.1622

word types è

Dim. 1 Dim. 2 Dim. 3

apricot 2 0 0

digital 0 1 2

information 1 6 1

Example: Word Similarity

cosine(apricot,information) =

cosine(digital,information) =

cosine(apricot,digital) =

cos 𝑥, 𝑦 =
∑! 𝑥!𝑦!

∑! 𝑥!" ∑! 𝑦!"

2 + 0 + 0
4 + 0 + 0 1 + 36 + 1

= 0.1622

0 + 6 + 2
0 + 1 + 4 1 + 36 + 1

= 0.5804

0 + 0 + 0
4 + 0 + 0 0 + 1 + 4

= 0.0

word types è

Dim. 1 Dim. 2 Dim. 3

apricot 2 0 0

digital 0 1 2

information 1 6 1

Other Similarity Measures

Adding Morphology, Syntax, and
Semantics to Embeddings

Lin (1998): “Automatic Retrieval and Clustering of Similar Words”

Padó and Lapata (2007): “Dependency-based Construction of Semantic
Space Models”

Levy and Goldberg (2014): “Dependency-Based Word Embeddings”

Cotterell and Schütze (2015): “Morphological Word Embeddings”

Ferraro et al. (2017): “Frame-Based Continuous Lexical Semantics
through Exponential Family Tensor Factorization and Semantic Proto-
Roles”

and many more…

Outline

Continuous representations
Motivation
Key idea: represent blobs with vectors

Evaluation
Common continuous representation models

Shared Intuition

Model the meaning of a word by “embedding” in a
vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many
computational linguistic applications by a vocabulary

index (“word number 545”) or the string itself

Three Common Kinds of Embedding
Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value

decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Three Common Kinds of Embedding
Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value

decomposition/Latent Semantic Analysis
3. Neural-network-inspired models (skip-grams, CBOW)

Co-occurrence matrices can be used in their own
right, but they’re most often used as inputs

(directly or indirectly) to the matrix factorization
or neural approaches

Co-occurrence Matrix

Acquire basic contextual
statistics (often counts) for

each word type v via
correlate.

Per-correlated
word statistics

j

i

words

co
rr

el
at

es

Co-occurrence Matrix

Acquire basic contextual
statistics (often counts) for
each word type v via
correlate: For example:
• documents
– Record how often a word

occurs in each document

•

Per-correlated
word statistics

j

i

words

co
rr

el
at

es
correlates =
documents

Co-occurrence Matrix

Acquire basic contextual
statistics (often counts) for
each word type v via
correlate: For example:
• documents
• surrounding context words
– Record how often v occurs

with other word types u
•

Per-correlated
word statistics

j

i

words

co
rr

el
at

es
correlates =
word types

Co-occurrence Matrix

Acquire basic contextual
statistics (often counts) for
each word type v via
correlate: For example:
• documents
• surrounding context words
• linguistic annotations (POS

tags, syntax)
• …

Per-correlated
word statistics

j

i

words

co
rr

el
at

es
Assumption: Two words

are similar if their
vectors are similar

“Acquire basic contextual statistics
(often counts) for each word type v”

• Two basic, initial counting approaches
– Record which words appear in which documents
– Record which words appear together

• These are good first attempts, but with some
large downsides

“You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

basic bag-of-
words

counting

“You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two documents are similar if their vectors are similar

“You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar???

“You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!

“You shall know a word by the
company it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

“You shall know a word by the
company it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

a cloud computer stores digital data on a remote computer

Context: those other words within a small “window” of a target word

“You shall know a word by the
company it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

The size of windows depends on your goals
The shorter the windows , the more syntactic the representation

± 1-3 more “syntax-y”
The longer the windows, the more semantic the representation

± 4-10 more “semantic-y”

“You shall know a word by the
company it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!

Context: those other words within a small “window” of a target word

Pointwise Mutual Information (PMI):
Dealing with Problems of Raw Counts

Raw word frequency is not a
great measure of association
between words

It’s very skewed: “the” and “of”
are very frequent, but maybe not
the most discriminative

We’d rather have a measure
that asks whether a context
word is particularly
informative about the
target word.

(Positive) Pointwise Mutual
Information ((P)PMI)

Pointwise Mutual Information (PMI):
Dealing with Problems of Raw Counts

Raw word frequency is not a
great measure of association
between words

It’s very skewed: “the” and “of”
are very frequent, but maybe not
the most discriminative

We’d rather have a measure
that asks whether a context
word is particularly
informative about the
target word.

(Positive) Pointwise Mutual
Information ((P)PMI)

Pointwise mutual information:
Do events x and y co-occur more than if they
were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)
𝑝 𝑥 𝑝(𝑦)

probability words x and y occur together
(in the same context/window)

probability that
word x occurs

probability that
word y occurs

Pointwise Mutual Information (PMI):
Dealing with Problems of Raw Counts

Raw word frequency is not a
great measure of association
between words

It’s very skewed: “the” and “of”
are very frequent, but maybe not
the most discriminative

We’d rather have a measure
that asks whether a context
word is particularly
informative about the
target word.

(Positive) Pointwise Mutual
Information ((P)PMI)

Pointwise mutual information:
Do events x and y co-occur more than if they
were independent?

PMI between two words: (Church & Hanks
1989)

 Do words x and y co-occur more than if they
were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)
𝑝 𝑥 𝑝(𝑦)

Advanced:
Equivalent PMI Computations

Intuition: Do words x and y co-occur more than
if they were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)
𝑝 𝑥 𝑝(𝑦)

= log
𝑝 𝑦	 𝑥)
𝑝(𝑦)

= log
𝑝 𝑥	 𝑦)
𝑝(𝑥)

“Noun Classification from Predicate-
Argument Structure,” Hindle (1990)

Object of “drink” Count PMI

it 3 1.3

anything 3 5.2

wine 2 9.3

tea 2 11.8

liquid 2 10.5

“drink it” is more common than “drink wine”

“wine” is a better “drinkable” thing than “it”

Brown clustering
(Brown et al., 1992)

An agglomerative clustering algorithm that
clusters words based on which words precede or

follow them

These word clusters can be turned into a kind of
vector (binary vector)

Advanced
topic

Brown Clusters as vectors
Build a binary tree from
bottom to top based on
how clusters are merged

Each word represented by
binary string = path from
root to leaf

Each intermediate node is
a cluster

CEO

chairman president

November001
000

00110010

00 01

…
010

0

root

In practice, use an available implementation: https://github.com/percyliang/brown-cluster

Advanced
topic

Brown cluster examples
(from 3SLP)

20 CHAPTER 19 • VECTOR SEMANTICSBrown Algorithm

• Words merged according to contextual
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

Figure 19.16 Brown clustering as a binary tree. A full binary string represents a word; each
binary prefix represents a larger class to which the word belongs and can be used as an vector
representation for the word. After Koo et al. (2008).

After clustering, a word can be represented by the binary string that corresponds
to its path from the root node; 0 for left, 1 for right, at each choice point in the binary
tree. For example in Fig. 19.16, the word chairman is the vector 0010 and October
is 011. Since Brown clustering is a hard clustering algorithm (each word has onlyhard clustering

cluster), there is just one string per word.
Now we can extract useful features by taking the binary prefixes of this bit string;

each prefix represents a cluster to which the word belongs. For example the string 01
in the figure represents the cluster of month names {November, October}, the string
0001 the names of common nouns for corporate executives {chairman, president},
1 is verbs {run, sprint, walk}, and 0 is nouns. These prefixes can then be used
as a vector representation for the word; the shorter the prefix, the more abstract
the cluster. The length of the vector representation can thus be adjusted to fit the
needs of the particular task. Koo et al. (2008) improving parsing by using multiple
features: a 4-6 bit prefix to capture part of speech information and a full bit string to
represent words. Spitkovsky et al. (2011) shows that vectors made of the first 8 or
9-bits of a Brown clustering perform well at grammar induction. Because they are
based on immediately neighboring words, Brown clusters are most commonly used
for representing the syntactic properties of words, and hence are commonly used as
a feature in parsers. Nonetheless, the clusters do represent some semantic properties
as well. Fig. 19.17 shows some examples from a large clustering from Brown et al.
(1992).

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody
had hadn’t hath would’ve could’ve should’ve must’ve might’ve
asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift
Figure 19.17 Some sample Brown clusters from a 260,741-word vocabulary trained on 366
million words of running text (Brown et al., 1992). Note the mixed syntactic-semantic nature
of the clusters.

Note that the naive version of the Brown clustering algorithm described above is
extremely inefficient — O(n5): at each of n iterations, the algorithm considers each
of n2 merges, and for each merge, compute the value of the clustering by summing
over n2 terms. because it has to consider every possible pair of merges. In practice
we use more efficient O(n3) algorithms that use tables to pre-compute the values for
each merge (Brown et al. 1992, Liang 2005).

Advanced
topic

(each of these bars is a
different cluster)

Three Common Kinds of Embedding
Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value

decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Learn more in:
• Your project
• Paper (673)

• Other classes (478/678)

Matrix Factorization

Per-correlated
word statistics

j

i

Advanced
topic

words

co
rr

el
at

es

correlate examples:
• documents

• surrounding context words
• linguistic annotations (POS

tags, syntax)
• …

Matrix Factorization

Per-
correlate
(latent)
factor
usage

Per-correlated
word statistics

Word embedding
matrix:

Per-factor word
representation

j

i

K “factors”

Advanced
topic

words

co
rr

el
at

es

words j

correlate examples:
• documents

• surrounding context words
• linguistic annotations (POS

tags, syntax)
• …

Topic Models:
Latent Dirichlet Allocation

(Blei et al., 2003)

Per-document
(unigram) word
counts

Count of word j
in document i

j

i

Core assumptions:
1. K “topics”: distributions over possible vocab

words
2. Each document i has general “preferences”

for which topics to use
3. Each observed word j in a document i can

come from a different topic

Advanced
topic

In practice, many people use
the gensim library

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document
(latent)
topic
usage

Per-document
(unigram) word
counts

Per-topic word
usage

Count of word j
in document i

j

i

K “topics”: distribution over
vocabulary

Advanced
topic

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document

(latent)
topic usage

Per-document
(unigram) word
counts

Per-topic
word
usage

Advanced
topic

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document

(latent)
topic usage

Per-document
(unigram) word
counts

Per-topic
word
usage

d

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic

Explicit conditioning left
off (for space)

Advanced
topic

Generative story
(CMSC 691: Graphical & Statistical Models of Learning)

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document

(latent)
topic usage

Per-document
(unigram) word
counts

Per-topic
word
usage

d

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic

Explicit conditioning left
off (for space)

Advanced
topic

Generative story
(CMSC 691: Graphical & Statistical Models of Learning)

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document

(latent)
topic usage

Per-document
(unigram) word
counts

Per-topic
word
usage

d

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic

Explicit conditioning left
off (for space)

Advanced
topic

Generative story
(CMSC 691: Graphical & Statistical Models of Learning)

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document

(latent)
topic usage

Per-document
(unigram) word
counts

Per-topic
word
usage

d

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic

Explicit conditioning left
off (for space)

Advanced
topic

Generative story
(CMSC 691: Graphical & Statistical Models of Learning)

Latent Dirichlet Allocation
(Blei et al., 2003)

Per-
document

(latent)
topic usage

Per-document
(unigram) word
counts

Per-topic
word
usage

d

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic

Explicit conditioning left
off (for space)

Advanced
topic

Generative story
(CMSC 691: Graphical & Statistical Models of Learning)

Three Common Kinds of Embedding
Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value

decomposition/Latent Semantic Analysis
3. Neural-network-inspired models (skip-grams, CBOW)

Word2Vec

• Mikolov et al. (2013; NeurIPS): “Distributed
Representations of Words and Phrases and their
Compositionality”

• Revisits the context-word approach
• Learn a model p(c | w) to predict a context word

from a target word

Word2Vec
• Mikolov et al. (2013; NeurIPS): “Distributed

Representations of Words and Phrases and their
Compositionality”

• Revisits the context-word approach
• Learn a model p(c | w) to predict a context word

from a target word
• Learn two types of vector representations
– ℎ' ∈ ℝ(: vector embeddings for each context word
– 𝑣) ∈ ℝ(: vector embeddings for each target word

𝑝 𝑐	 𝑤) ∝ exp(ℎ!"𝑣#)

Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
*,,

9
',)	%"./0

count 𝑐, 𝑤 log 𝑝 𝑐	 𝑤)

Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
*,,

9
',)	%"./0

count 𝑐, 𝑤 ℎ'1𝑣) − log(9
2

exp(ℎ21𝑣))))

Word2Vec has Inspired a Lot of Work

Off-the-shelf embeddings
https://code.google.com/archive/p/word2vec/

Off-the-shelf implementations
https://radimrehurek.com/gensim/models/word2vec.html

Follow-on work
“GloVe: Global Vectors for Word Representation”
(Pennington, Socher and Manning, 2014)

https://nlp.stanford.edu/projects/glove/

Many others
15000+ citations

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://nlp.stanford.edu/projects/glove/

FastText

• “Enriching Word Vectors with Subword
Information” Bojanowski et al. (2017; TACL)

• Main idea: learn character n-gram
embeddings for the target word (not context)
and modify the word2vec model to use these

• Pre-trained models in 150+ languages
– https://fasttext.cc

FastText Details

Main idea: learn character n-gram embeddings and
for the target word (not the context) modify the
word2vec model to use these
Original word2vec:

𝑝 𝑐	 𝑤) ∝ exp(ℎCD𝑣E)
FastText:

𝑝 𝑐	 𝑤) ∝ exp ℎCD >
,.83+1	F	G,	E

𝑧F

FastText Details
Main idea: learn character n-gram embeddings and for
the target word (not the context) modify the word2vec
model to use these

𝑝 𝑐	 𝑤) ∝ exp ℎ'1 +
345/"6	7	.3)

𝑧7

fluffy à fl flu luf uff ffy fy
decompose

FastText Details
Main idea: learn character n-gram embeddings and for
the target word (not the context) modify the word2vec
model to use these

𝑝 𝑐	 𝑤) ∝ exp ℎ'1 +
345/"6	7	.3)

𝑧7

fluffy à fl flu luf uff ffy fy
decompose

Learn n-gram
embeddings

FastText Details
Main idea: learn character n-gram embeddings and for
the target word (not the context) modify the word2vec
model to use these

𝑝 𝑐	 𝑤) ∝ exp ℎ'1 +
345/"6	7	.3)

𝑧7

fluffy à fl flu luf uff ffy fy

ß

decompose

Learn n-gram
embeddings

To deterministically
compute word embeddings

Contextual Word Embeddings

Word2vec-based models are not context-
dependent

Single word type à single word embedding

If a single word type can have different
meanings…

bank, bass, plant,…

… why should we only have one embedding?

Contextual Word Embeddings

Word2vec-based models are not context-
dependent

Single word type à single word embedding

If a single word type can have different
meanings…

bank, bass, plant,…

… why should we only have one embedding?

Entire task devoted to classifying these meanings:
Word Sense Disambiguation

Contextual Word Embeddings

Growing interest in this
Off-the-shelf is a bit more difficult

Download and run a model
Can’t just download a file of embeddings

Two to know about (with code):
ELMo: “Deep contextualized word
representations” Peters et al. (2018; NAACL)
 https://allennlp.org/elmo
BERT: “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”
Devlin et al. (2019; NAACL)

https://github.com/google-research/bert

https://allennlp.org/elmo
https://github.com/google-research/bert

Outline

Continuous representations
Motivation
Key idea: represent blobs with vectors

Evaluation
Common continuous representation models

