Distributed Representations

CMSC 473/673
Frank Ferraro

Outline

Continuous representations

Motivation

Key idea: represent blobs with vectors

Evaluation

Common continuous representation models

How have we represented words?

Each word is a distinct item
Bijection between the strings and unique integer ids:
"cat" --> 3, "kitten" --> 792 "dog" --> 17394

Are "cat" and "kitten" similar?

Equivalently: "One-hot" encoding
Represent each word type w with a vector the size of the vocabulary
This vector has V-1 zero entries, and 1 non-zero (one) entry

Recall from Deck 2:

Representing a Linguistic "Blob"

1. An array of sub-blobs word \rightarrow array of characters sentence \rightarrow array of words
2. Integer representation/one-hot encoding
个This is what we've (implicitly?) been using

Let V = vocab size (\# types)

1. Represent each word type with a unique integer i , where $0 \leq i<V$
2. Or equivalently, ...

- Assign each word to some index i , where $0 \leq i<V$
- Represent each word w with a V-dimensional binary vector e_{w}, where $e_{w, i}=1$ and 0 otherwise

Recall from Deck 2:

One-Hot Encoding Example

- Let our vocab be \{a, cat, saw, mouse, happy\}
- V = \# types = 5
- Assign:

a	4
cat	2
saw	3
mouse	0
happy	1

The Fragility of One-Hot Encodings

Case Study: Maxent Plagiarism Detector
Given two documents x_{1}, x_{2}, predict $\mathrm{y}=1$ (plagiarized) or $\mathrm{y}=0$ (not plagiarized)

What is/are the:

- Method/steps for predicting?
- General formulation?
- Features?

There's no way you'll catch me!

Case Study: Maxent Plagiarism Detector (Feature Example)

Given two documents x_{1}, x_{2}, predict $\mathrm{y}=1$ (plagiarized) or $\mathrm{y}=0$ (not plagiarized)

- Intuition: documents are more likely to be plagiarized if they have words in common

$$
\begin{gathered}
f_{\text {any-common-word,Plag. }}\left(x_{1}, x_{2}\right)=? ? ? \\
f_{<\text {word v>,Plag. }}\left(x_{1}, x_{2}\right)=? ? ?
\end{gathered}
$$

Case Study: Maxent Plagiarism Detector (Feature Example)

Given two documents x_{1}, x_{2}, predict $\mathrm{y}=1$ (plagiarized) or $\mathrm{y}=0$ (not plagiarized)

- Intuition: documents are more likely to be plagiarized if they have words in common

$$
\begin{gathered}
f_{\text {any-common-word,Plag. }}\left(x_{1}, x_{2}\right)=? ? ? \\
f_{<\text {word } \mathrm{v}>\text {,Plag. }}\left(x_{1}, x_{2}\right)=? ? ? \\
f_{<\text {ngram } \mathrm{Z}>\text {,Plag. }}\left(x_{1}, x_{2}\right)=? ? ?
\end{gathered}
$$

Case Study: Maxent Plagiarism Detector (Feature Example)

Given two documents x_{1}, x_{2}, predict $\mathrm{y}=1$ (plagiarized) or $\mathrm{y}=0$ (not plagiarized)

- Intuition: documents are more likely to be plagiarized if they have words in common

Case Study: Maxent Plagiarism Detector (Feature Example)

Given two documents x_{1}, x_{2}, predict $\mathrm{y}=1$ (plagiarized) or $\mathrm{y}=0$ (not plagiarized)

- Intuition: documents are more likely to be plagiarized if they have words in common

Plagiarism Detection: Word Similarity?
 MAINFRAMES

 MAINFRAMES

 MAINFRAMES}

Mainframes are primarily referred to large computers with rapid, advanced processing capabilities that can execute and perform tasks equivalent to many Personal Computers (PCs) machines networked together. It is characterized with high quantity Random Access Memory (RAM), very large secondary storage devices, and high-speed processors to cater for the needs of the computers under its service.
Consisting of advanced components, mainframes have the capability of running multiple large applications required by many and most enterprises and organizations. This is one of its advantages. Mainframes are also suitable to cater for those applications (programs) or files that are of very high demand by its users (clients).
Examples of such organizations and enterprises using mainframes are online shoppina websites such as

Mainframes usually are referred those computers with fast, advanced processing capabilities that could perform by itself tasks that may require a lot of Personal Computers (PC) Machines. Usually mainframes would have lots of RAMs, very large secondary storage devices, and very fast processors to cater for the needs of those computers under its service.
Due to the advanced components mainframes have, these computers have the capability of running multiple large applications required by most enterprises, which is one of its advantage. Mainframes are also suitable to cater for those applications or files that are of very large demand by its users (clients). Examples of these include the large online shopping websites -i.e. : Ebay,

Recall from Deck 2:

Representing a Linguistic "Blob"

1. An array of sub-blobs
word \rightarrow array of characters
sentence \rightarrow array of words
2. Integer
representation/one-hot encoding

Let E be some embedding size (often 100, 200, 300, etc.)

Represent each word w with an E-dimensional realvalued vector e_{w}
3. Dense embedding

Remember:

A Dense Representation (E=2)

Distributional Representations

A dense, "low" dimensional vector representation

Distributional Representations

A dense, "low" dimensional vector representation

> An E-dimensional
> vector, often (but not
> always) real-valued

Distributional Representations

A dense, "low" dimensional vector representation

$$
\begin{array}{cc}
\text { Up till ~2013: E could be } & \text { An E-dimensional } \\
\begin{array}{cc}
\text { any size } & \text { vector, often (but not }
\end{array} \\
\text { 2013-present: E << vocab } & \text { always) real-valued }
\end{array}
$$

Distributional Representations

A dense, "low" dimensional vector representation

$$
\begin{array}{ccc}
\text { Many values } & \text { Up till ~2013: E could be } & \text { An E-dimensional } \\
\text { are not 0 (or at } & \text { any size } & \text { vector, often (but not } \\
\text { least less } & \text { 2013-present: E << vocab } & \text { always) real-valued } \\
\text { sparse than } & &
\end{array}
$$

one-hot)

Distributional Representations

A dense, "low" dimensional vector representation

Many values are not 0 (or at	Up till ~2013: E could be	any E-dimensional
least less	vector, often (but not	

Distributional models of meaning = vector-space models of meaning = vector semantics

Zellig Harris (1954):

"oculist and eye-doctor ... occur in almost the same environments" "If A and B have almost identical environments we say that they are synonyms."

Firth (1957):
"You shall know a word by the company it keeps!"

Continuous Meaning

The paper reflected the truth.

Continuous Meaning

The paper reflected the truth.

Continuous Meaning

The paper reflected the truth.

> glean
> hide
> falsehood
> where might these go in this space?

Continuous Meaning

The paper reflected the truth.

Continuous Meaning

The paper reflected the truth.

(Some) Properties of

Embeddings

Capture "like" (similar) words

target:	Redmond	Havel	ninjutsu	graffiti	capitulate
	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

(Some) Properties of

Embeddings
Capture "like" (similar) words

target:	Redmond	Havel	ninjutsu	graffiti	capitulate
	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Capture relationships

$$
\begin{gathered}
\text { vector('king') - } \\
\text { vector('man') }+ \\
\text { vector('woman')' } \approx \\
\text { vector('queen') } \\
\\
\text { vector('Paris') - } \\
\text { vector('France') }+ \\
\text { vector('Italy') } \approx \\
\text { vector('Rome') }
\end{gathered}
$$

Case Study: Maxent Plagiarism Detector (Feature Example)

Given two documents x_{1}, x_{2}, predict $\mathrm{y}=1$ (plagiarized) or $\mathrm{y}=0$ (not plagiarized)

- Intuition: documents are more likely to be plagiarized if they have words in common

Outline

Continuous representations

Motivation

Key idea: represent blobs with vectors

Evaluation

Common continuous representation models

"Embeddings" Did Not Begin In This Century...

Hinton (1986): "Learning Distributed Representations of Concepts"

Deerwester et al. (1990): "Indexing by Latent Semantic Analysis"

Brown et al. (1992): "Class-based n-gram models of natural language"

Key Ideas

1. Acquire basic contextual statistics (often counts) for each word type v

Key Ideas

1. Acquire basic contextual statistics (often counts) for each word type v
2. Extract a real-valued vector e_{v} for each word v from those statistics

Key Ideas

1. Acquire basic contextual statistics (often counts) for each word type v
2. Extract a real-valued vector e_{v} for each word v from those statistics
3. Use the vectors to represent each word in later tasks

Key Ideas: Generalizing to "blobs"

1. Acquire basic contextual statistics (often counts) for each blob type v
2. Extract a real-valued vector e_{v} for each blob v from those statistics
3. Use the vectors to represent each blob in later tasks

Outline

Continuous representations

Motivation
Key idea: represent blobs with vectors
Evaluation
Common continuous representation models

Evaluating Similarity

Extrinsic (task-based, end-to-end) Evaluation:
Question Answering
Spell Checking
Essay grading

Evaluating Similarity

Extrinsic (task-based, end-to-end) Evaluation:
Question Answering
Spell Checking
Essay grading
Intrinsic Evaluation:
Correlation between algorithm and human word similarity ratings
Taking TOEFL multiple-choice vocabulary tests

Common Evaluation: Correlation between similarity ratings

- Input: list of N word pairs $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- Each word pair $\left(x_{i}, y_{i}\right)$ has a human-provided similarity score h_{i}
- Use your embeddings to compute an embedding similarity score $s_{i}=\operatorname{sim}\left(x_{i}, y_{i}\right)$
- Compute the correlation between human and computed similarities

$$
\rho=\operatorname{Corr}\left(\left(h_{1}, \ldots, h_{N}\right),\left(s_{1}, \ldots, s_{N}\right)\right)
$$

- Wordsim353: 353 noun pairs rated 0-10

Cosine: Measuring Similarity

Given 2 target words v and w how similar are their vectors?

Dot product or inner product from linear algebra

$$
\text { dot-product }(\vec{v}, \vec{w})=\vec{v} \cdot \vec{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}
$$

High when two vectors have large values in same dimensions, low for orthogonal vectors with zeros in complementary distribution

Cosine: Measuring Similarity

Given 2 target words v and w how similar are their vectors?

Dot product or inner product from linear algebra

$$
\text { dot-product }(\vec{v}, \vec{w})=\vec{v} \cdot \vec{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}
$$

High when two vectors have large values in same dimensions, low for orthogonal vectors with zeros in complementary distribution

Correct for high magnitude vectors

$$
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Cosine Similarity

Divide the dot product by the length of the two vectors

$$
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

This is the cosine of the angle between them

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & =\cos \theta
\end{aligned}
$$

Cosine as a similarity metric

-1: vectors point in opposite directions
+1 : vectors point in same directions

0 : vectors are orthogonal

Example: Word Similarity

Example: Word Similarity

$$
\cos (x, y)=\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}
$$

	Dim. 1	Dim. 2	Dim. 3
apricot	2	0	0
digital	0	1	2
information	1	6	1

cosine(apricot,information) $=$
cosine(digital, information) $=$
cosine(apricot,digital) $=$

Example: Word Similarity

$$
\cos (x, y)=\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}
$$

	Dim. 1	Dim. 2	Dim. 3
apricot	2	0	0
digital	0	1	2
information	1	6	1

$\operatorname{cosine}($ apricot,information $)=\frac{2+0+0}{\sqrt{4+0+0} \sqrt{1+36+1}}=0.1622$
cosine(digital, information) $=$
cosine(apricot,digital) $=$

Example: Word Similarity

$$
\cos (x, y)=\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}
$$

	Dim. 1	Dim. 2	Dim. 3
apricot	2	0	0
digital	0	1	2
information	1	6	1

cosine(apricot,information $)=\frac{2+0+0}{\sqrt{4+0+0} \sqrt{1+36+1}}=0.1622$
cosine(digital,information) $=\frac{0+6+2}{\sqrt{0+1+4} \sqrt{1+36+1}}=0.5804$
cosine(apricot,digital) $=$

$$
\frac{0+0+0}{\sqrt{4+0+0} \sqrt{0+1+4}}=0.0
$$

Other Similarity Measures

Adding Morphology, Syntax, and Semantics to Embeddings

Lin (1998): "Automatic Retrieval and Clustering of Similar Words"
Padó and Lapata (2007): "Dependency-based Construction of Semantic Space Models"

Levy and Goldberg (2014): "Dependency-Based Word Embeddings"
Cotterell and Schütze (2015): "Morphological Word Embeddings"
Ferraro et al. (2017): "Frame-Based Continuous Lexical Semantics through Exponential Family Tensor Factorization and Semantic ProtoRoles"

Outline

Continuous representations

Motivation

Key idea: represent blobs with vectors

Evaluation

Common continuous representation models

Shared Intuition

Model the meaning of a word by "embedding" in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic applications by a vocabulary index ("word number 545") or the string itself

Three Common Kinds of Embedding Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Three Common Kinds of Embedding Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis
3. Neural-network-inspired models (skip-grams, CBOW)

Co-occurrence matrices can be used in their own right, but they're most often used as inputs (directly or indirectly) to the matrix factorization or neural approaches

Co-occurrence Matrix

words

Acquire basic contextual statistics (often counts) for each word type v via correlate.

Co-occurrence Matrix

Acquire basic contextual statistics (often counts) for each word type v via correlate: For example:

- documents
- Record how often a word occurs in each document
words

\# correlates =
\# documents

Co-occurrence Matrix

Acquire basic contextual statistics (often counts) for each word type v via correlate: For example:

- documents
- surrounding context words
- Record how often v occurs with other word types u
words

\# correlates = \# word types

Co-occurrence Matrix

Acquire basic contextual statistics (often counts) for each word type v via correlate: For example:

- documents
- surrounding context words
- linguistic annotations (POS tags, syntax)
-

...

Assumption: Two words are similar if their vectors are similar

"Acquire basic contextual statistics (often counts) for each word type v"

- Two basic, initial counting approaches
- Record which words appear in which documents
- Record which words appear together
- These are good first attempts, but with some large downsides

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the
basic bag-ofwords counting adventure scenes are fun.. It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

Assumption: Two documents are similar if their vectors are similar

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

Assumption: Two words are similar if their vectors are similar???

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

Assumption: Two words are similar if their vectors are similar Issue: Count word vectors are very large, sparse, and skewed!

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word a cloud computer stores digital data on a remote computer

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

The size of windows depends on your goals
The shorter the windows, the more syntactic the representation

$$
\pm 1-3 \text { more "syntax-y" }
$$

The longer the windows, the more semantic the representation $\pm 4-10$ more "semantic-y"

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word
Assumption: Two words are similar if their vectors are similar Issue: Count word vectors are very large, sparse, and skewed!

Pointwise Mutual Information (PMI):
 Dealing with Problems of Raw Counts

Raw word frequency is not a great measure of association between words

It's very skewed: "the" and "of" are very frequent, but maybe not the most discriminative

We'd rather have a measure that asks whether a context word is particularly informative about the target word.
(Positive) Pointwise Mutual
Information ((P)PMI)

Pointwise Mutual Information (PMI): Dealing with Problems of Raw Counts

Raw word frequency is not a great measure of association between words

It's very skewed: "the" and "of" are very frequent, but maybe not the most discriminative
that asks whether a context word is particularly informative about the target word.
(Positive) Pointwise Mutual Information ((P)PMI)

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?
probability words x and y occur together
(in the same context/window)

$$
\operatorname{PMI}(x, y)=\log \frac{p(x, y)}{p(x) p(y)}
$$

probability that
probability that
word x occurs

Pointwise Mutual Information (PMI): Dealing with Problems of Raw Counts

Raw word frequency is not a great measure of association between words

It's very skewed: "the" and "of" are very frequent, but maybe not the most discriminative

We'd rather have a measure that asks whether a context word is particularly informative about the target word.
(Positive) Pointwise Mutual Information ((P)PMI)

Pointwise mutual information:
Do events x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(x, y)=\log \frac{p(x, y)}{p(x) p(y)}
$$

PMI between two words: (Church \& Hanks 1989)

Do words x and y co-occur more than if they were independent?

Advanced:

Equivalent PMI Computations

Intuition: Do words x and y co-occur more than if they were independent?
$\operatorname{PMI}(x, y)=\log \frac{p(x, y)}{p(x) p(y)}=\log \frac{p(y \mid x)}{p(y)}=\log \frac{p(x \mid y)}{p(x)}$
"Noun Classification from PredicateArgument Structure," Hindle (1990) "drink it" is more common than "drink wine"
"wine" is a better "drinkable" thing than "it"

Object of "drink"	Count	PMI
it	3	1.3
anything	3	5.2
wine	2	9.3
tea	2	11.8
liquid	2	10.5

Brown clustering (Brown et al., 1992)

An agglomerative clustering algorithm that clusters words based on which words precede or follow them

These word clusters can be turned into a kind of vector (binary vector)

Brown Clusters as vectors

Build a binary tree from bottom to top based on how clusters are merged

Each word represented by

 binary string = path from root to leaf

Brown cluster examples (from 3SLP)

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody
had hadn't hath would've could’ve should've must've might've
asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift

(each of these bars is a different cluster)

Three Common Kinds of Embedding Models

2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Matrix Factorization

correlate examples:

- documents
- surrounding context words
- linguistic annotations (POS tags, syntax)

Matrix Factorization

correlate examples:

- documents
- surrounding context words
- linguistic annotations (POS tags, syntax)

Advanced topic

Count of word j in document i

Topic Models:

Latent Dirichlet Allocation

(Blei et al., 2003)

Core assumptions:

1. K "topics": distributions over possible vocab words
2. Each document i has general "preferences" for which topics to use
3. Each observed word j in a document i can come from a different topic

In practice, many people use the gensim library

Latent Dirichlet Allocation (Blei et al., 2003)

Latent Dirichlet Allocation (Blei et al., 2003)

Latent Dirichlet Allocation (Blei et al., 2003)

1. K "topics": distributions over possible vocab words
2. Each document i has general "preferences" for which topics to use
3. Each observed word j in a document i can come from a different topic

Latent Dirichlet Allocation (Blei et al., 2003)

1. K "topics": distributions over possible vocab words
2. Each document i has general "preferences" for which topics to use
3. Each observed word j in a document i can come from a different topic

Latent Dirichlet Allocation (Blei et al., 2003)

1. K "topics": distributions over possible vocab words
2. Each document i has general "preferences" for which topics to use
3. Each observed word j in a document i can come from a different topic

Latent Dirichlet Allocation

 (Blei et al., 2003)

1. K "topics": distributions over possible vocab words
2. Each document i has general "preferences" for which topics to use
3. Each observed word j in a document i can come from a different topic

Advanced topic

Latent Dirichlet Allocation (Blei et al., 2003)

1. K "topics": distributions over possible vocab words
2. Each document i has general "preferences" for which topics to use
3. Each observed word j in a document i can come from a different topic

Three Common Kinds of Embedding Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis
3. Neural-network-inspired models (skip-grams, CBOW)

Word2Vec

- Mikolov et al. (2013; NeurIPS): "Distributed Representations of Words and Phrases and their Compositionality"
- Revisits the context-word approach
- Learn a model p(c | w) to predict a context word from a target word

Word2Vec

- Mikolov et al. (2013; NeurIPS): "Distributed Representations of Words and Phrases and their Compositionality"
- Revisits the context-word approach
- Learn a model p(c|w) to predict a context word from a target word
- Learn two types of vector representations
$-h_{c} \in \mathbb{R}^{E}$: vector embeddings for each context word
$-v_{w} \in \mathbb{R}^{E}$: vector embeddings for each target word

$$
p(c \mid w) \propto \exp \left(h_{c}^{T} v_{w}\right)
$$

Word2Vec

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word

Word2Vec

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word

Word2Vec has Inspired a Lot of Work

Off-the-shelf embeddings
https://code.google.com/archive/p/word2vec/
Off-the-shelf implementations
https://radimrehurek.com/gensim/models/word2vec.html
Follow-on work
"GloVe: Global Vectors for Word Representation"
(Pennington, Socher and Manning, 2014)
https://nlp.stanford.edu/projects/glove/
Many others
15000+ citations

FastText

- "Enriching Word Vectors with Subword Information" Bojanowski et al. (2017; TACL)
- Main idea: learn character n-gram embeddings for the target word (not context) and modify the word2vec model to use these
- Pre-trained models in 150+ languages
- https://fasttext.cc

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these

Original word2vec:

$$
p(c \mid w) \propto \exp \left(h_{c}^{T} v_{w}\right)
$$

FastText:

$$
p(c \mid w) \propto \exp \left(h_{c}^{T}\left(\sum_{\mathrm{n}-\operatorname{gram} g \text { in } w} z_{g}\right)\right)
$$

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these

$$
\begin{aligned}
& p(c \mid w) \propto \exp \left(h_{c}^{T}\left(\sum_{\mathrm{n}-\operatorname{gram} g \operatorname{in} w} z_{g}\right)\right) \\
& \underset{\mathrm{fluffy}}{\rightarrow} \xrightarrow{\text { decompose }} \mathrm{fl} \text { flu luf uff } \mathrm{ffy} \mathrm{f}_{\mathrm{y}}
\end{aligned}
$$

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these

Contextual Word Embeddings

Word2vec-based models are not contextdependent

Single word type \rightarrow single word embedding

If a single word type can have different meanings...
bank, bass, plant,...
... why should we only have one embedding?

Contextual Word Embeddings

Word2vec-based models are not contextdependent

Single word type \rightarrow single word embedding

If a single word type can have different meanings...
bank, bass, plant,...
Entire task devoted to classifying these meanings: Word Sense Disambiguation
... why should we only have one embedding?

Contextual Word Embeddings

Growing interest in this
Off-the-shelf is a bit more difficult
Download and run a model
Can't just download a file of embeddings
Two to know about (with code):
ELMo: "Deep contextualized word representations" Peters et al. (2018; NAACL)
https://allennlp.org/elmo

BERT: "BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding"
Devlin et al. (2019; NAACL)
https://github.com/google-research/bert

Outline

Continuous representations
Motivation
Key idea: represent blobs with vectors

Evaluation

Common continuous representation models

