Classification Building Block:

 Maxent/Logistic Regression/Log-linearCMSC 473/673
Frank Ferraro

Outline

Maxent/Logistic Regression/Log-linear Defining the model Defining the objective Learning: Optimizing the objective Math: gradient derivation (advanced)

Defining the Model

Terminology

common NLP
as statistical regression

Log-Linear Models
(Multinomial) logistic regression
Softmax regression
based in
information theory
a form of
viewed as
to be cool today :)

Maximum Entropy models (MaxEnt)
Generalized Linear Models
Discriminative Naïve Bayes
Very shallow (sigmoidal) neural nets

Maxent Models are Flexible

Maxent models can be used:

- to design discriminatively trained classifiers, or
- to create featureful language models
- (among other approaches in NLP and ML more broadly)

Reminder!

Examining Assumption 3 Made for Classification Evaluation

- Given X, our classifier produces a score for each possible label

- Normally (*but this can be adjusted!) best label $=\arg \max P($ label \mid example $)$

Terminology: Posterior Probability

- Posterior probability:

$$
p(\bigcirc \mid x) \text { vs. } p(\circlearrowleft \mid x)
$$

- These are conditional probabilities
- If \triangle and \circlearrowleft are the only two options:

$$
p(\bigcirc \mid x)+p(\circlearrowleft \mid x)=1
$$

- and

$$
p(\circlearrowleft \mid x) \geq 0, p(\mid x) \geq 0
$$

Terminology (with variables)

- Posterior probability:

$$
\mathrm{p}\left(\mathrm{Y}=\text { label }_{1} \mid \mathrm{X}\right) \text { vs. } \mathrm{p}\left(\mathrm{Y}=\text { label }_{0} \mid \mathrm{X}\right)
$$

- These are conditional probabilities

$$
\mathrm{p}\left(\mathrm{Y}=\text { label }_{1} \mid \mathrm{X}\right)+\mathrm{p}\left(\mathrm{Y}=\text { label }_{0} \mid \mathrm{X}\right)=1
$$

$$
\begin{gathered}
\mathrm{p}\left(\mathrm{Y}=\operatorname{label}_{1} \mid \mathrm{X}\right) \geq 0, \\
\mathrm{p}\left(\mathrm{Y}=\operatorname{label}_{0} \mid \mathrm{X}\right) \geq 0
\end{gathered}
$$

Key Take-away

We will learn this $p(Y \mid X)$

Maxent Models for Classification: Discriminatively ...

Directly model the posterior

Discriminatively trained classifier

Maxent Models for Classification: Discriminatively or Generatively Trained

Directly model the posterior

Discriminatively trained classifier

Model the posterior with Bayes rule
$p(Y \| X) \propto \operatorname{maxent}(X$
Generatively trained classifier with maxent-based language model

Maximum Entropy (Log-linear) Models For Discriminatively Trained Classifiers

(we'll start with this one)

$p(y \mid x)=\operatorname{maxent}(x, y)$

discriminatively trained:
classify in one go

Core Aspects to Maxent Classifier $p(y \mid x)$

We need to define

- features $f(x)$ from x that are meaningful;
- weights θ (at least one per feature, often one per feature/label combination) to say how important each feature is; and
- a way to form probabilities from f and θ

Discriminative ML

Classification in 30 Seconds

- Common goal: probabilistic classifier p(y | x)
- Often done by defining features between x and y that are meaningful
- Denoted by a general vector of K features

$$
f(x)=\left(f_{1}(x), \ldots, f_{K}(x)\right)
$$

- Features can be thought of as "soft" rules
- E.g., Positive sentiments tweets may be more likely to have the word "happy"

Example Classification Tasks

GLUE

https：／／gluebenchmark．com／
datasets：glue

GLUE Tasks

Name	Download
The Corpus of Linguistic Acceptability	㐫
The Stanford Sentiment Treebank	$\stackrel{\text { A }}{4}$
Microsoft Research Paraphrase Corpus	市
Semantic Textual Similarity Benchmark	辛
Quora Question Pairs	亦
MultinLI Matched	方
MultiNLI Mismatched	各
Question NLI	考
Recognizing Textual Entailment	离
Winograd NLI	者
Diagnostics Main	考

Name	Identifier
Broadcoverage Diagnostics	AX－b
CommitmentBank	CB
Choice of Plausible Alternatives	COPA
Multi－Sentence Reading Comprehension	RTE
Recognizing Textual Entailment	WiC
Words in Context	WSC
The Winograd Schema Challenge	ReCoRD
BoolQ	AX－g
Reading Comprehension with Commonsense Reasoning	Winogender Schema Diagnostics

If SuperGLUE

https：／／super．gluebenchmark．com／ ©datasets：super＿glue

Recognizing Textual Entailment (RTE)

Given a premise sentence s and hypothesis sentence h, determine if h "follows from" s

ENTAILMENT (yes):

NOT ENTAILED (no):

Recognizing Textual Entailment (RTE)

Given a premise sentence s and hypothesis sentence h, determine if h "follows from" s

ENTAILMENT (yes):
s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h : The Bulls basketball team is based in Chicago. NOT ENTAILED (no):

Recognizing Textual Entailment (RTE)

Given a premise sentence s and hypothesis sentence h, determine if h "follows from" s

ENTAILMENT (yes):
s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h : The Bulls basketball team is based in Chicago.
NOT ENTAILED (no):
s: Based on a worldwide study of smoking-related fire and disaster data, UC Davis epidemiologists show smoking is a leading cause of fires and death from fires globally.
h : Domestic fires are the major cause of fire death.

RTE

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National

Entailed

Basketball Association championships.
h: The Bulls basketball team is based in Chicago.

Discriminative Document Classification

s: Michael Jordan, coach Phil
Jackson and the star cast,
ENTAILED
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team
is based in Chicago.

Discriminative Document Classification

s: Michael Jordan, coach Phil

Jackson and the star cast,
itreluding Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team
is based in Chicago.

ENTAILED

These extractions
are all features that have fired (likely
have some
significance)

Discriminative Document Classification

s: Michael Jordan, coach Phil
Jackson and the star_cast, - . -itneluding Scoty, é Pippen, took the Chicago Bulls to six
National Basketball
Association championships.

h: The Bulls basketball team
is based in Chicago.

ENTAILED
These extractions are all features that have fired (likely
have some
significance)

Discriminative Document Classification

s: Michael Jordan, coach Phil Jackson and the star_cast, - . -ifneluḍing Scot, ié Pippen, took the Chicago Bulls to six
National Basketball
Association championships.

h: The Bulls basketball team
is based in Chicago.

ENTAILED
These extractions are all features that have fired (likely
have some
significance)

We need to score the different extracted clues.

extract_and_score Bulls, entailed $^{\text {(筫) }}$)

ENTAILED
ifrecudding ScottréPippen, took
the Chicago Bulls to six $\ldots \ldots$
National Basketball
Association champ extract_and_score basketball, entailed (
h: The Bulls basketball team
is based in Chicago.
extract_and_score Chicago, entailed $^{\text {(筫, }}$, ENTAILED)

Score and Combine Our Clues

score $_{1, \text { Entailed }}$（筫）
score $_{2, \text { Entailed }}$（䉙）
score $_{3}$ ，Entailed（

posterior probability of
ENTAILED

score $_{\mathrm{k}}$ ，Entailed （屋）

Scoring Our Clues

（ignore the feature indexing for now）
，ENTAILED
score $_{1,}$ ，Entailed （管）
score $_{2, \text { Entailed }}$（管）
score $_{3, \text { Entailed }}$（筜）
$+$

Turning Scores into Probabilities

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h : The Bulls basketball team is based in Chicago.

[^0]
Turning Scores into Probabilities (More Generally)

score $\left(x, y_{1}\right)>\operatorname{score}\left(x, y_{2}\right)$

$$
p\left(y_{1} \mid x\right)>p\left(y_{2} \mid x\right)
$$

Maxent Modeling

 function G ?

s: Michael Jordan, coach Phil
Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h : The Bulls basketball team is based in Chicago.

This could be any real number

What function G...

operates on any real number?
is never less than 0 ?
monotonic? $(\mathrm{a}<\mathrm{b} \rightarrow \mathrm{G}(\mathrm{a})<\mathrm{G}(\mathrm{b}))$

What function G...

operates on any real number?

is never less than 0 ?

monotonic?

$G(x)=\exp (x)$
$(\mathrm{a}<\mathrm{b} \rightarrow \mathrm{G}(\mathrm{a})<\mathrm{G}(\mathrm{b}))$

Maxent Modeling

[^1]
ENTAILED

Maxent Modeling

> s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
> h: The Bulls basketball team is based in Chicago.

Entailed

Maxent Modeling

weight $_{1, \text { Entailed } * \text { applies }_{1} \text {（闑）}}$ ）
weight $_{2, \text { Entailed } * \text { applies }_{2} \text {（圊）}}$（
weight $_{\left.3, \text { Entailed } * \text { applies }_{3} \text {（䦩）}\right) ~}^{\text {（ }}$

Maxent Modeling

K different for K different
weights...
features

Maxent Modeling

multiplied and then summed

Maxent Modeling

巴入〇（Dot＿product of Entailed weight＿vec feature＿vec（管））

K different for K different
weights．．． features．．．
multiplied and then summed

Maxent Modeling

$\exp ($

 $\theta_{\text {ENTAILED }}^{T} f($ 垦 $)$

K different for K different
weights...
multiplied and then summed

Maxent Classifier, schematically

Maxent Modeling

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h : The Bulls basketball team is based in Chicago.

Q: How do we define Z?

1

Normalization for Classification

Z

exp(

$\theta_{J}^{T} f($ (롤)
label j

Normalization for Classification (long form)

label j

...

Maxent Classifier, schematically

Maxent Classifier, schematically

Core Aspects to Maxent Classifier $p(y \mid x)$

- features $f(x)$ from x that are meaningful;
- weights θ (at least one per feature, often one per feature/label combination) to say how important each feature is; and
- a way to form probabilities from f and θ

Different Notation, Same Meaning

$p(Y=y \mid x)=$ $\frac{\exp \left(\theta_{y}^{T} f(x)\right)}{y_{y^{\prime}} \exp \left(\theta_{y_{\prime}}^{T} f(x)\right)}$

Different Notation, Same Meaning

$p(Y=y \mid x)=$ $\exp \left(\theta_{y}^{\boldsymbol{T}} f(x)\right)$ $\overline{\sum_{y_{\prime}} \exp \left(\theta_{y^{\prime}}^{T} f(x)\right)}$

$p(Y=y \mid x) \propto \exp \left(\theta_{y}^{\boldsymbol{T}} f(x)\right)$

Different Notation, Same Meaning

$$
p(Y=y \mid x)=\frac{\exp \left(\theta_{y}^{T} f(x)\right)}{\sum_{y^{\prime}} \exp \left(\theta_{y^{\prime}}^{T} f(x)\right)}
$$

$$
p(Y=y \mid x) \propto \exp \left(\theta_{y}^{\boldsymbol{T}} f(x)\right)
$$

$p(Y \mid x)=\operatorname{softmax}\left(\theta^{\boldsymbol{T}} f(x)\right)$

Outline

Maximum Entropy models Defining the model Defining the objective

1. Defining Appropriate Features
2. Understanding features in conditional models

Learning: Optimizing the objective
Math: gradient derivation (advanced)

Defining Appropriate Features in a Maxent Model

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Generally templated

Often binary-valued (0 or 1), but can be real-valued

Bag-of-words as a Function

Based on some tokenization, turn an input document into an array (or dictionary or set) of its unique vocab items

Think of getting a BOW rep. as a function \mathbf{f}
input: Document
output: Container of size E, indexable by each vocab type v

Some Bag-of-words Functions

Kind	Type of \boldsymbol{f}_{v}	Interpretation
Binary	0,1	Did v appear in the document?
Count-based	Natural number (int $>=0)$	How often did v occur in the document?
Averaged	Real number $(>=0,<=1)$	How often did v occur in the document, normalized by doc length?
TF-IDF (term frequency, inverse document frequency)	Real number $(>=0)$	How frequent is a word, tempered by how prevalent it is across the corpus (to be covered
later!)		

Q: Is this a reasonable representation?

Q: What are some tradeoffs (benefits vs. costs)?

Templated Features

Define a feature $\mathrm{f}_{\text {clue }}$ (1) for each clue you want to consider

The feature $f_{\text {clue }}$ fires if the clue applies to/can be found in 署

Clue is often a target phrase (an n-gram)

Maxent Modeling:
 Templated Binary Feature Functions

Example of a Templated Binary Feature Functions

$\begin{gathered} \text { applies }_{\text {target }(\text { 筫 })=} \\ \left\{\begin{array}{c} 1, \text { target } \text { matches } \text { 罡 } \\ 0, \quad \text { otherwise } \end{array}\right. \end{gathered}$

$\operatorname{applies}_{\text {ball }}$（䍙）$=$
$\{1$, ball in both s and h of 屋
0 ，otherwise

Example of a Templated Binary Feature Functions

$\operatorname{applies}_{\text {ball }}(\mathbb{1})=$ $\{1$, ball in both s and h of

0 , otherwise

Q: If there are V vocab types and L label
types:

1. How many features are defined if unigram targets are used (w/ each label)?

Example of a Templated Binary Feature Functions

$\operatorname{applies}_{\text {ball }}(\mathbb{1})=$
$\left\{\begin{aligned} & 1, \text { ball in both } s \text { and } h \text { of 屋 } \\ & 0, \\ &\end{aligned}\right.$

Q: If there are V vocab types and L label
types:

1. How many features are defined if unigram targets are used (w/ each label)?

$$
\text { A1: } V L
$$

Example of a Templated Binary Feature Functions

0 , otherwise

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

$$
\overline{\mathrm{A} 1: V L}
$$

2. How many features are defined if bigram targets are used?

Example of a Templated Binary Feature Functions

$\operatorname{applies}_{\text {ball }}(\mathbb{1})=$ $\left\{\begin{aligned} & 1, \text { ball in both } s \text { and } h \text { of 屋 } \\ & \\ & 0, \quad \text { otherwise }\end{aligned}\right.$

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

$$
\overline{\mathrm{A} 1: V L}
$$

2. How many features are defined if bigram targets are used (w/ each label)?

$$
\text { A2: } V^{2} L
$$

Example of a Templated Binary Feature Functions

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

$$
\overline{\mathrm{A} 1: V L}
$$

2. How many features are defined if bigram targets are used (w/ each label)?

$$
\mathrm{A} 2: V^{2} L
$$

3. How many features are defined if unigram and bigram targets are used (w/ each label)?

Example of a Templated Binary Feature Functions

$\operatorname{applies}_{\text {ball }}$ (䍚) $=$ $\left\{\begin{aligned} & 1, \text { ball in both } s \text { and } h \text { of 屋 } \\ & 0, \\ & 0,\end{aligned}\right.$

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

$$
\overline{\mathrm{A} 1: V L}
$$

2. How many features are defined if bigram targets are used (w/ each label)?

$$
\text { A2: } V^{2} L
$$

3. How many features are defined if unigram and bigram targets are used ($w /$ each label)?

$$
\text { A2: }\left(V+V^{2}\right) L
$$

Outline

Maximum Entropy models

Defining the model
Defining the objective
Learning: Optimizing the objective
Math: gradient derivation (advanced)

$p_{\theta}(y \mid x)$ mamomemaxe

$F(\theta ; x, y)$

Defining the Objective

Primary Objective: Likelihood

- Goal: maximize the score your model gives to the training data it observes
- This is called the likelihood of your data
- In classification, this is p(label \| 筜)
- For language modeling, this is p(label)

Objective = Full Likelihood? (Classification)

$\prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right) \propto \prod_{i} \exp \left(\theta_{y_{i}}^{T} f\left(x_{i}\right)\right)$
These values can have very small magnitude $\boldsymbol{\rightarrow}$ underflow

Differentiating this product could be a pain

Logarithms

$(0,1] \rightarrow(-\infty, 0]$

Products \rightarrow Sums

$$
\begin{aligned}
& \log (a b)=\log (a)+\log (b) \\
& \log (a / b)=\log (a)-\log (b)
\end{aligned}
$$

Inverse of exp

$$
\log (\exp (x))=x
$$

Log-Likelihood (Classification)

Wide range of (negative) numbers

$\log \prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right)=\sum_{i} \log p_{\theta}\left(y_{i} \mid x_{i}\right)$

Products \rightarrow Sums

$$
\begin{aligned}
& \log (a b)=\log (a)+\log (b) \\
& \log (a / b)=\log (a)-\log (b)
\end{aligned}
$$

Maximize Log-Likelihood (Classification)

Wide range of (negative) numbers

Sums are more stable

Inverse of exp
$\log (\exp (x))=x$

Differentiating this
becomes nicer (even
though Z depends on θ)

Log-Likelihood (Classification)

Wide range of (negative) numbers

Sums are more stable
 $\log \prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right)=\sum_{i} \log p_{\theta}\left(y_{i} \mid x_{i}\right)$

$$
=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

$$
=F(\theta)
$$

Equivalent Version 2: Minimize Cross Entropy Loss

Equivalent Version 2: Minimize Cross Entropy Loss

Classification Log-likelihood \cong Cross Entropy Loss

$$
F(\theta)=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

```
CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100,
    reduce=None, reduction='mean') [SOURCE]
```

This criterion combines LogSoftmax and NLLLoss in one single class.
It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

The input is expected to contain raw, unnormalized scores for each class.
input has to be a Tensor of size either (minibatch, C) or (minibatch, $C, d_{1}, d_{2}, \ldots, d_{K}$) with $K \geq 1$ for the K-dimensional case (described later).

This criterion expects a class index in the range $[0, C-1]$ as the target for each value of a 1D tensor of size minibatch; if ignore_index is specified, this criterion also accepts this class index (this index may not necessarily be in the class range).

The loss can be described as:

$$
\operatorname{loss}(x, \text { class })=-\log \left(\frac{\exp (x[\text { class }])}{\sum_{j} \exp (x[j])}\right)=-x[\text { class }]+\log \left(\sum_{j} \exp (x[j])\right)
$$

Preventing Extreme Values

- Likelihood on its own can lead to overfitting and/or extreme values in the probability computation

$$
F(\theta)=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

Regularization:
 Preventing Extreme Values

$$
F(\theta)=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

With fixed/predefined features, the values
of θ determine how "good" or "bad" our
objective learning is

Regularization:

Preventing Extreme Values

$F(\theta)=\left(\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)\right)-R(\theta)$

- Augment the objective with a regularizer

With fixed/predefined features, the values of θ determine how "good" or "bad" our objective learning is

- This regularizer places an inductive bias (or, prior) on the general "shape" and values of θ

(Squared) L2 Regularization

$$
R(\theta)=\|\theta\|_{2}^{2}=\sum_{k} \theta_{k}^{2}
$$

Outline

Maximum Entropy classifiers

Defining the model
Defining the objective
Learning: Optimizing the objective Math: gradient derivation (advanced)

How do we learn?

How do we evaluate (or use)? Change the eval function.

How will we optimize $F(\theta)$?

Calculus

Example (Best case, solve for roots of the derivative)

$$
\begin{aligned}
& F(x)=-(x-2)^{2} \\
& \text { differentiate } \\
& F^{\prime}(x)=-2 x+4 \\
& \text { Solve } F^{\prime}(x)=0 \\
& x=2
\end{aligned}
$$

What if you can't find the roots?
 Follow the derivative

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t}
Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t}
Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t}
Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $t+=1$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t}
Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $t+=1$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t}
Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $t+=1$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $t+=1$

Gradient = Multi-variable derivative

Gradient Ascent

What if you can't find the roots? Follow the gradient

Set $\mathrm{t}=0$
Pick a starting value θ_{t}
Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get gradient $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $t+=1$

K-dimensional vectors

Outline

Maximum Entropy classifiers

Defining the model Defining the objective Learning: Optimizing the objective

Math: gradient derivation (advanced)
Everything after this in this slide deck is "advanced" (not required, but highly recommended for any PhD or MS thesis student)

Expectation of a Random Variable

number of pieces of candy

$$
\begin{aligned}
& 1 / 6 * 1+ \\
& 1 / 6 * 2+ \\
& 1 / 6 * 3+ \\
& 1 / 6 * 4+ \\
& 1 / 6 * 5+ \\
& 1 / 6 * 6
\end{aligned} \quad=3.5 \quad \mathbb{E}[X]=\sum_{x} x p(x)
$$

Expectation of a Random Variable

number of pieces of candy

Expectation of a Random Variable

number of pieces of candy

$$
\begin{aligned}
& 1 / 2 * 1+ \\
& 1 / 10 * 2+ \\
& 1 / 10 * 3+ \\
& 1 / 10 * 4+ \\
& 1 / 10 * 5+ \\
& 1 / 10 * 6
\end{aligned}
$$

$$
\mathbb{E}[]]=\sum_{x} x p(x)
$$

Expectations Depend on a Probability Distribution

number of pieces of candy

Log-Likelihood Gradient

Each component for label / and
feature k is the difference between:

Log-Likelihood Gradient

Each component for label / and feature k is the difference between:
the total value of feature f_{k} in the training data occurring with label /
$\sum_{i} 1\left[y_{i}=l\right] f_{k}\left(x_{i}\right)$

Log-Likelihood Gradient

Each component for label / and feature k is the difference between:
the total value of feature f_{k} in the training data occurring with label /

$$
\sum_{i} 1\left[y_{i}=l\right] f_{k}\left(x_{i}\right)
$$

and
the total value the current model p_{θ} thinks it computes for feature f_{k} with label /

$$
\sum_{i} \mathbb{E}_{y^{\prime} \sim p\left(y^{\prime} \mid x_{i}\right)}\left[1\left[y^{\prime}=l\right] f_{k}\left(x_{i}\right)\right]
$$

Log-Likelihood Gradient Derivation

$$
\nabla_{\theta} F(\theta)=\nabla_{\theta} \sum_{i}\left[\theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)\right]
$$

Remember: Common Derivative Rules

$$
\begin{aligned}
\frac{d \exp x}{d x}=\exp x & \frac{d f(x) g(x)}{d x}=\frac{d f(x)}{d x} g(x)+\frac{d g(x)}{d x} f(x) \\
\frac{d \log x}{d x}=\frac{1}{x} & \frac{d f(g(x))}{d x}=\frac{d f(g(x))}{d g(x)} \frac{d g(x)}{d x}
\end{aligned}
$$

Log-Likelihood Gradient Derivation

$$
\begin{aligned}
& \nabla_{\theta} F(\theta)=\nabla_{\theta} \sum_{i}\left[\theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)\right] \\
&=\sum_{i} f\left(x_{i}\right)-\quad \\
& Z\left(x_{i}\right)=\sum_{y^{\prime}} \exp \left(\theta_{y^{\prime}} \cdot f\left(x_{i}\right)\right)
\end{aligned}
$$

Log-Likelihood Gradient Derivation

Log-Likelihood Gradient Derivation

$$
\begin{aligned}
\nabla_{\theta} F(\theta) & =\nabla_{\theta} \sum_{i}\left[\theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)\right] \\
& =\sum_{i} f\left(x_{i}\right)-\sum_{i} \sum_{y^{\prime}} \frac{\exp \left(\theta_{y_{1}}^{T} f\left(x_{i}\right)\right)}{Z\left(x_{i}\right)} f\left(x_{i}\right)
\end{aligned}
$$

Do we want these to fully match?
What does it mean if they do?
What if we have missing values in our data?

Gradient Optimization for Classifier $\mathrm{p}(y \mid$ 管）

Set $\mathrm{t}=0$

$$
\theta_{y}^{T} f(\text { 成 })-\log Z(\text { 管 }) ~
$$

Pick a starting value θ_{t} Until converged：
1．Get func．value $F\left(\theta_{t}\right)$
2．Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3．Get scaling factor ρ_{t}
4．Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5．Set $t+=1$

$$
\frac{\partial F}{\partial \theta_{k, y}}=f_{k, y}(\text { (䍚 })-\sum_{y^{\prime}} f_{k, y \prime}(\text { 葍 }) p\left(y^{\prime} \mid \text { 䍚 }\right)
$$

Outline

Maximum Entropy classifiers
Defining the model
Defining the objective
Learning: Optimizing the objective
Math: gradient derivation (advanced)

[^0]: s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h : The Bulls basketball team is based in Chicago.

[^1]: s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball
 Association championships.
 h : The Bulls basketball team is based in Chicago.

